×

Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. (English) Zbl 1484.76069

Summary: In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and existence of the solution of governing differential equation. We apply Laplace transform and use technique of iterative method to obtain the solution. Few applications of the main result are discussed by taking different initial conditions to observe the effect on derivatives of different fractional order on the concentration of miscible fluids.

MSC:

76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Agarwal; Kritika; S. D. Purohit, i>A mathematical fractional model with non-singular kernel for</i> <i>thrombin receptor activation in calcium signalling</i, Math. Meth. Appl. Sci., 42, 7160-7171 (2019) · Zbl 1435.35389 · doi:10.1002/mma.5822
[2] R. Agarwal, M. P. Yadav, R. P. Agarwal, <i>Collation analysis of fractional moisture content</i> <i>based model in unsaturated zone using q-homotopy analysis method</i>, Methods of Mathematical
[3] R. Agarwal; M. P. Yadav; R. P. Agarwal, t al., <i>Analytic solution of fractional advection dispersion</i> <i>equation with decay for contaminant transport in porous media</i, Matematicki Vesnik, 71, 5-15 (2019) · Zbl 1488.35548
[4] R. Agarwal; M. P. Yadav; R. P. Agarwal, t al., <i>Analytic solution of space time fractional advection</i> <i>dispersion equation with retardation for contaminant transport in porous media</i, Progress in Fractional Differentiation and Applications, 5, 283-295 (2019)
[5] R. Agarwal; M. P. Yadav; R. P. Agarwal, i>Analytic solution of time fractional Boussinesq equation</i> <i>for groundwater flow in unconfined aquifer</i, J. Discontinuity, Nonlinearity Complexity, 8, 341-352 (2019) · Zbl 1432.35217 · doi:10.5890/DNC.2019.09.009
[6] A. Atangana; D. Baleanu, i>Caputo-Fabrizio Derivative Applied to Groundwater Flow within</i> <i>Confined Aquifer</i, J Eng. Phys., 143 (2017)
[7] M. S. Aydogan; D. Baleanu; A. Mousalou, t al., <i>On high order fractional integro-differential</i> <i>equations including the Caputo-Fabrizio derivative</i, Boundary Value Probl., 2018 (2018) · Zbl 1499.34400
[8] D. Baleanu; A. Mousalou; S. Rezapour, i>The extended fractional Caputo-Fabrizio derivative of</i> <i>order</i> 0 ≤ <i>σ;</i> < 1 <i>on</i> \(C_\mathbb{R}[0,1]\) <i>and the existence of solutions for two higher-order series-type differential equations</i, Adv. Differ. Equations, 2018 (2018) · Zbl 1446.34009
[9] N. R. Bastos, i>Calculus of variations involving Caputo-Fabrizio fractional differentiation</i, Statistics, Optimization & Information Computing, 6, 12-21 (2018)
[10] J. Bear, <i>Dynamics of fluids in porous media</i>, Courier Corporation, 2013.
[11] D. Baleanu; S. S. Sajjadi; A.; Jajarmi, t al., <i>New features of the fractional Euler-Lagrange</i> <i>equations for a physical system within non-singular derivative operator</i, Eur. Phys. J. Plus, 134 (2019)
[12] D. Baleanu; A. Jajarmi; J. H. Asad, i>The fractional model of spring pendulum: New features within</i> <i>different kernels</i, Proc. Rom. Acad., 19, 447-454 (2018)
[13] M. Caputo; M. Fabrizio, i>A new definition of fractional derivative without singular kernel</i, Prog. Fractional Differ. Appl., 2, 73-85 (2015)
[14] G. Dagan, <i>Flow and transport in porous formations</i>, Springer Science & Business Media, 2012.
[15] G. De Josselin de Jong, i>Longitudinal and transverse diffusion in granular deposits</i, Trans. Am. Geophys. Union, 39, 67-74 (1958) · doi:10.1029/TR039i001p00067
[16] F. A. Dullien, <i>Porous
[17] R. A. Greenkorn, i>Steady flow through porous media</i, AIChE Journal, 27, 529-545 (1975)
[18] J. Hristov, i>Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond:</i> <i>Appraising analysis with emphasis on diffusion models</i, Front. Fract. Calc., 1, 270-342 (2017)
[19] A. Jajarmi; B. Ghanbari; D. Baleanu, i>A new and efficient numerical method for the fractional</i> <i>modeling and optimal control of diabetes and tuberculosis co-existence</i, Chaos: An Interdiscip. J. Nonlinear Sci., 29 (2019) · Zbl 1423.92093
[20] A. Jajarmi; S. Arshad; D. Baleanu, i>A new fractional modelling and control strategy for the outbreak</i> <i>of dengue fever</i, Physica A: Stat. Mech. Appl., 535 (2019) · Zbl 07571256
[21] J. Losada; J. J. Nieto, i>Properties of a new fractional derivative without singular kernel</i, Prog. Fractional Differ. Appl., 1, 87-92 (2015)
[22] P. I. Polubarinova-Koch, <i>Theory of ground water movement</i>, Princeton University Press, 2015.
[23] P. G. Saffman, i>A theory of dispersion in a porous medium</i, J. Fluid Mech., 6, 321-349 (1959) · doi:10.1017/S0022112059000672
[24] A. Scheidegger, <i>On the theory of flow of miscible phases in porous media</i>, International Union of Geodesy and Geophysics, 1957.
[25] F. W. Schwartz, i>Macroscopic dispersion in porous media: The controlling factors</i, Water Resour. Res., 13, 743-752 (1977) · doi:10.1029/WR013i004p00743
[26] M. P. Yadav; R. Agarwal, i>Numerical investigation of fractional-fractal Boussinesq equation</i, Chaos: An Interdiscip. J. Nonlinear Sci., 29 (2019) · Zbl 1406.35479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.