×

Dimension groups for polynomial odometers. (English) Zbl 1360.37035

Summary: Here we study a class of dynamical systems we call polynomial odometers. These are adic maps on regularly structured Bratteli diagrams and include the Pascal and Stirling adic maps as examples. We describe the dimension groups associated with these systems and use this to study spaces of invariant measures. For many, but not all, the space of invariant measures is affinely homeomorphic to the space of Borel probability measures on a closed interval in \(\mathbb{R}\), we call such polynomial odometers \(reasonable\). We describe the possible isomorphisms between dimension groups for reasonable polynomial odometers, and use this to prove a version of a result of T. Giordano et al. [J. Reine Angew. Math. 469, 51–111 (1995; Zbl 0834.46053)] for this situation. Namely, we show that there is an isomorphism between unital ordered groups associated with two reasonable polynomial odometers if and only if there is a special kind of orbit equivalence between the two.

MSC:

37B10 Symbolic dynamics
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06F15 Ordered groups

Citations:

Zbl 0834.46053
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bailey (Frick), S.: Dynamical properties of some non-stationary, non-simple Bratteli-Vershik systems. Ph.D. thesis, University of North Carolina, Chapel Hill
[2] Bailey (Frick), S., Keane, M., Petersen, K., Salama, I.: Ergodicity of the Euler adic transformation on the Euler graph. Math. Proc. Camb. Philos. Soc. 141(2), 231-238 (2006) · Zbl 1112.28012
[3] Baker, B.M., Handelman, D.E.: Positive polynomials and time dependent integer-valued random variables. Can. J. Math. 44(1), 3-41 (1992) · Zbl 0774.60032
[4] Bezuglyi, S., Kwiatkowski, J., Medynets, K., Solomyak, B.: Invariant measures on stationary Bratteli diagrams. Preprint, arXiv:0812.1088 · Zbl 1205.37009
[5] Bezuglyi, S., Kwiatkowski, J., Medynets, K.: Aperiodic substitution systems and their Bratteli diagrams. Ergod. Theory Dyn. Syst. 29(1), 37-72 (2009) · Zbl 1169.37004
[6] Effros, E. G., Dimensions and C∗-algebras, Washington D.C.
[7] Frick, S.B.: Limited scope adic transformations. Discrete Contin. Dyn. Syst. Ser. 2(2), 269-285 (2009) · Zbl 1175.37004
[8] Frick, S.B., Petersen, K.: Random permutations and unique fully supported ergodicity for the Euler adic transformation. Ann. Inst. Henri Poincaré Probab. Stat. 44(5), 876-885 (2008) · Zbl 1175.37005
[9] Frick, S.B., Petersen, K.: Reinforced random walks and adic transformations. J. Theor. Probab. 23(3), 920-943 (2010) · Zbl 1217.37004
[10] Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and C∗-crossed products. J. Reine Angew. Math. 469, 51-111 (1995) · Zbl 0834.46053
[11] Glasner, E., Weiss, B.: Weak orbit equivalence of Cantor minimal systems. Int. J. Math. 6(4), 559-579 (1995) · Zbl 0879.54046
[12] Gnedin, A.: Boundaries from inhomogeneous Bernoulli trials. Preprint, arXiv:0909.4933 · Zbl 1227.60090
[13] Gnedin, A., Pitman, J.: Exchangeable Gibbs partitions and Stirling triangles. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 12, 83-102 (2005), 244-245. Translation in J. Math. Sci. 138(3), 5674-5685 (2006). Zap. Nauč. Semin. POMI 325 (2005) · Zbl 1293.60010
[14] Hajian, A., Ito, Y., Kakutani, S.: Invariant measures and orbits of dissipative transformations. Adv. Math. 9, 52-65 (1972) · Zbl 0236.28010
[15] Handelman, D.: Positive polynomials and product type actions of compact groups. Mem. Am. Math. Soc. 54(320), xi+79 (1985) · Zbl 0571.46045
[16] Handelman, D.: Deciding eventual positivity of polynomials. Ergod. Theory Dyn. Syst. 6(1), 57-79 (1986) · Zbl 0606.22005
[17] Handelman, D.: Matrices of positive polynomials. Electron. J. Linear Algebra 19, 2-89 (2009) · Zbl 1195.37010
[18] Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6), 827-864 (1992) · Zbl 0786.46053
[19] Kim, K.H., Ormes, N.S., Roush, F.W.: The spectra of nonnegative integer matrices via formal power series. J. Am. Math. Soc. 13(4), 773-806 (2000) · Zbl 0968.15005
[20] Méla, X.: A class of nonstationary adic transformations. Ann. Inst. Henri Poincaré Probab. Stat. 42(1), 103-123 (2006) · Zbl 1134.37302
[21] Méla, X., Petersen, K.: Dynamical properties of the Pascal adic transformation. Ergod. Theory Dyn. Syst. 25(1), 227-256 (2005) · Zbl 1069.37007
[22] Petersen, K., Schmidt, K.: Klaus symmetric Gibbs measures. Trans. Am. Math. Soc. 349(7), 2775-2811 (1997) · Zbl 0873.28008
[23] Petersen, K., Varchenko, A.: The Euler adic dynamical system and path counts in the Euler graph. Tokyo J. Math. 33(2), 327-340 (2010) · Zbl 1213.37008
[24] Renault, J.: A Groupoid Approach to C∗-Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980). ii+160 pp. ISBN 3-540-09977-8 · Zbl 0433.46049
[25] Veršik, A.M.: A description of invariant measures for actions of certain infinite-dimensional groups. Dokl. Akad. Nauk SSSR 218, 749-752 (1974)
[26] Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982). ISBN 0-387-95152-0 · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.