×

Application of fractional operators in modelling for charge carrier transport in amorphous semiconductor with multiple trapping. (English) Zbl 1457.82368

Summary: This paper is devoted to investigate the description of fractional space and time, mathematical modelling of charge carrier transport in disordered semiconductor. We propose the analytical approximate solutions of fractional drift diffusive equation that is under the influence of multiple trapping, by employing numerical technique the fractional reduced differential transform method (FRDTM). The present work gives wider description of FRDTM and provides approximate results in terms of convergent series. The approximate results through FRDTM, rendering that the proposed method is very simple, effective and reliable in use and may easily be applicable for solution of more general, non-linear fractional differential equations.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ayant, Fy; Kumar, D., Fredholm type integral equation with special functions, Acta Univ. Sapientiae Math., 10, 1, 5-17 (2018) · Zbl 1411.45001 · doi:10.2478/ausm-2018-0001
[2] Choo, Ky; Muniandy, Sv; Woon, Kl; Gan, Mt; Ong, Ds, Modeling anomalous charge carrier transport in disordered organic semiconductors using the fractional drift-diffusion equation, Org. Electron., 41, 157-165 (2017) · doi:10.1016/j.orgel.2016.10.041
[3] Dorrego, G.; Kumar, D., A generalization of the kinetic equation using the Prabhakar-type operators, Honam Math. J., 39, 3, 401-416 (2017) · Zbl 1405.34007
[4] Hilfer, R., Fractional diffusion based on Riemann Liouville fractional derivatives, J. Phys. Chem. B, 104, 16, 3914-3917 (2000) · doi:10.1021/jp9936289
[5] Hilfer, R., Application of fractional calculus in physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002
[6] Keskin, Y.; Oturanc, G., The reduced differential transform method: a new approach to factional partial differential equations, Nonlinear Sci. Lett. A, 1, 2, 207-217 (2010)
[7] Kumar, D., Certain integrals of generalized hypergeometric and confluent hypergeometric functions, Sigmae, 5, 2, 8-18 (2016)
[8] Kumar, D.; Ayant, Fy; Kumar, D., A new class of integrals involving generalized hypergeometric function and multivariable Aleph-function, Kragujev. J. Math., 44, 4, 539-550 (2020) · Zbl 1488.33041
[9] Kumar, D.; Choi, J.; Srivastava, Hm, Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function, Nonlinear Funct. Anal. Appl., 23, 3, 455-471 (2018) · Zbl 1408.26008
[10] Kumar, D.; Daiya, J., Solution of linear fractional non-homogeneous differential equations with derivative of Jumarie fractional type, J. Chem. Bio. Phy. Sci. Sec. C, 6, 2, 956-970 (2016)
[11] Kumar, D.; Ram, J.; Choi, J., Certain generalized integral formulas involving Chebyshev Hermite polynomials, generalized \(M\)-series and Aleph-function, and their application in heat conduction, Int. J. Math. Anal., 9, 37, 1795-1803 (2015) · doi:10.12988/ijma.2015.53131
[12] Kumar, D.; Singh, J.; Prakash, A.; Swroop, R., Numerical simulation for system of time-fractional linear and nonlinear differential equations, Progr. Fract. Differ. Appl., 5, 1, 65-77 (2019) · doi:10.18576/pfda/050107
[13] Kumar, D.; Singh, J.; Purohit, Sd; Swroop, R., A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math. Model. Nat. Phenom., 14, 3, 1-13 (2019) · Zbl 1423.65001 · doi:10.1051/mmnp/2018063
[14] Kumar, D.; Singh, J.; Tanwar, K.; Baleanu, D., A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws, Int. J. Heat Mass Transf., 138, 1222-1227 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.04.094
[15] Lee, Ct; Lee, Ch, Conversion efficiency improvement mechanisms of polymer solar cells by balance electron-hole mobility using blended P3HT: PCBM: pentacene active layer, Org. Electron., 14, 8, 2046-2050 (2013) · doi:10.1016/j.orgel.2013.04.038
[16] Mandelbrot, Bb; Van Ness, Jw, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 4, 422-437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[17] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82, 3563-3567 (1999) · doi:10.1103/PhysRevLett.82.3563
[18] Prakash, A.; Kumar, M., Numerical method for solving time-fractional multi-dimensional diffusion equations, Int. J. Comput. Sci. Math., 8, 3, 257-267 (2017) · Zbl 1453.65379 · doi:10.1504/IJCSM.2017.085725
[19] Schneider, Wr; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 134-144 (1989) · Zbl 0692.45004 · doi:10.1063/1.528578
[20] Shaktawat, Bs; Gupta, Rk; Kumar, D., Generalized fractional kinetic equations and its solutions involving generalized Mittag-Leffler function, J. Raj. Acad. Phy. Sci., 16, 1-2, 63-74 (2017) · Zbl 1386.34015
[21] Sibatov, Rt; Uchaikin, Vv, Fractional differential approach to dispersive transport in semiconductors, Phys. Usp., 52, 10, 1019-1043 (2009) · doi:10.3367/UFNe.0179.200910c.1079
[22] Südland, N.; Volkmann, J.; Kumar, D., Applications to give an analytical solution to the Black Scholes equation, Integral Transforms Spec. Funct., 30, 3, 205-230 (2019) · Zbl 1412.35336 · doi:10.1080/10652469.2018.1555158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.