×

Sensitivity of the stability bound for ruin probabilities to claim distributions. (English) Zbl 1437.91459

Summary: We are interested in the approximation of the ruin probability of a classical risk model using the strong stability method. Particularly, we study the sensitivity of the stability bound for ruin probabilities of two risk models to approach (a simpler ideal model and a complex real one, which must be close in some sense) regarding to different large claims (heavy-tailed distributions). In a first case, we study the impact of the tail of some claim distributions on the quality of this approximation using the strong stability of a Markov chain. In a second case, we look at the sensitivity of the stability bound for the ruin probability regarding to different large claims, using two versions of the strong stability method: strong stability of a Markov chain and strong stability of a Lindley process. In both cases, comparative studies based on numerical examples and simulation results, involving different heavy-tailed distributions, are performed.

MSC:

91G70 Statistical methods; risk measures
91G05 Actuarial mathematics
62G32 Statistics of extreme values; tail inference

Software:

ismev
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aïssani D, Kartashov NV (1983) Ergodicity and stability of Markov chains with respect to operator topology in the space of transition kernels. Doklady Akademii Nauk Ukrainskoi SSR, Series A 11:3-5 · Zbl 0528.60067
[2] Aïssani D, Benouaret Z (2010) Modèles de risque et files d’attente: la méthode de stabilité forte. Afrika Statistika 5(1):210-218 · Zbl 1241.90026
[3] Asmussen S, Albrecher H (2010) Ruin probabilities (Second Edition). Advanced series on statistical science & applied probability, vol 14, World Scientific Publishing, Singapore, p 620 · Zbl 1247.91080
[4] Asmussen S, Kella O (1996) Rate modulation in dams and ruin problems. J Appl Probab 33:523-535 · Zbl 0860.60060 · doi:10.2307/3215076
[5] Asmussen S, Sigman K (1996) Monotone stochastic recursions and their duals. Probab Eng Inf Sci 10:1-20 · Zbl 1095.60519 · doi:10.1017/S0269964800004137
[6] Badila ES, Boxma OJ, Resing AC (2014) Queues and risk processes with dependencies. Stoch Model 30(3):390-419 · Zbl 1306.60132 · doi:10.1080/15326349.2014.930603
[7] Bareche, Aicha; Cherfaoui, Mouloud; Aïssani, Djamil, Quality of the Approximation of Ruin Probabilities Regarding to Large Claims, 119-126 (2015), Cham · Zbl 1337.91045 · doi:10.1007/978-3-319-17996-4_11
[8] Beirlant J, Rachev ST (1987) The problems of stability in insurance mathematics. Insurance Math and Econom 6:179-188 · Zbl 0648.62103 · doi:10.1016/0167-6687(87)90011-4
[9] Benouaret Z, Aïssani D (2010) Strong stability in a two-dimensional classical risk model with independent claims. Scand Actuar J 2:83-92 · Zbl 1224.91044 · doi:10.1080/03461230802673805
[10] Bolancé C, Guillen M, Nielsen JP (2003) Kernel density estimation of actuarial loss functions. Insurance: Math and Econom 32:19-36 · Zbl 1024.62041
[11] Buch-Larsen T, Nielsen JP, Guillen M, Bolancé C (2005) Kernel density estimation for heavy-tailed distribution using the Champernowne transformation. Statistics 6:503-518 · Zbl 1095.62040 · doi:10.1080/02331880500439782
[12] Chen SX (1999) Beta kernel estimators for density functions. Comput Stat Data Anal 31:131-145 · Zbl 0935.62042 · doi:10.1016/S0167-9473(99)00010-9
[13] Coles S (2001) An introduction to statistical modelling of extreme values. Springer, Berlin · Zbl 0980.62043 · doi:10.1007/978-1-4471-3675-0
[14] Embrechts P, Klueppelberg C, Mikosch T (1997) Modelling extremal events for finance and insurance. Springer, Heildelberg · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[15] Embrechts P, Veraverbeke N (1982) Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Math and Econom 1:55-72 · Zbl 0518.62083
[16] Enikeeva F, Kalashnikov V, Rusaityte D (2001) Continuity estimates for ruin probabilities. Scand Actuar J 1:18-39 · Zbl 0971.91038 · doi:10.1080/034612301750077293
[17] Gouriéroux C, Montfort A (2006) (non) consistency of the beta kernel estimator for recovery rate distribution. Working Paper 2006-31, Center for Research in Economics and Statistics (CREST)
[18] Jansen S (2014) On the notion(s) of duality for Markov processes. Probab Surv 11:59-120 · Zbl 1292.60077 · doi:10.1214/12-PS206
[19] Ji L, Zhang C (2014) A duality result for the generalized erlang risk model. Risks 2:456-466 · doi:10.3390/risks2040456
[20] Kalashnikov V (1978) Qualitative analysis of the behavior of complex systems by the test functions method. Moscow: Nauka, Russian · Zbl 0451.93002
[21] Kalashnikov V (1999) Bounds for ruin probabilities in the presence of large claims and their comparison. North American Actuarial Journal 3(2):116-128 · Zbl 1082.91538 · doi:10.1080/10920277.1999.10595805
[22] Kalashnikov V (2000) The stability concept for stochastic risk models, Working Paper Nr 166, Laboratory of Actuarial Mathematics, University of Copenhagen
[23] Kalashnikov V, Tsitsiashvili GSh (1973) On the stability of queueing systems with respect to disturbances of their distribution functions. Eng Cybern 10:211-217
[24] Kartashov NV (1986) Strongly stable Markov chains, stability problems for stochastic models (1981a), “Vsesoyus. Nauchno-Issled. Inst Sistem Issled”, Moscow, 54-59 English translation, vol 34 · Zbl 0594.60069 · doi:10.1007/BF01089787
[25] Kartashov NV (1996) Strong stable Markov chains. TbiMC Scientific Publishers, VSPV Utrecht · Zbl 0874.60082
[26] Kolokoltsov V, Lee R (2013) Stochastic duality of Markov processes: a study via generators. Stoch Anal Appl 31(6):992-1023 · Zbl 1291.60154 · doi:10.1080/07362994.2013.827098
[27] Konstantinidis DG (1999) Comparison of ruin probability estimates in the presence of heavy tails. J Math Sci 93(4):552-562 · Zbl 0978.62099 · doi:10.1007/BF02365061
[28] Konstantinidis DG (2007) Risk models with extremal subexponentiality. Brazilian Journal of Probability And Statistics, Brazilian Statistical Association 21:63-83 · Zbl 1272.91065
[29] Mitrophanov AY (2005) Sensitivity and convergence of uniformly ergodic Markov chains. J Appl Probab 42:1003-1014 · Zbl 1092.60027 · doi:10.1239/jap/1134587812
[30] Mouhoubi Z, Aïssani D (2005) Some inequalities of the uniform ergodicity and strong stability of homogeneous Markov chains. Pliska Studia Mathematica Bulgarica 17:171-186 · Zbl 1322.60143
[31] Panjer HH, Willmot GE (1992) Insurance risk models. The society of actuaries, Schaumburg (Illinois), p 442
[32] Rachev ST (1991) Probability Metrics and the Stability of the Stochastic Models, Wiley series in probability and mathematical statistics - Applied probability and statistics. Wiley, New York · Zbl 0744.60004
[33] Rusaityte D (2001) Continuity of the ruin probability in a model with borrowing and investments, Working Paper Nr 172, Laboratory of Actuarial Mathematics, University of Copenhagen
[34] Rusaityte D (2001) Stability bounds for ruin probabilities in a Markov modulated risk model with investments, Working Paper Nr 178, Laboratory of Actuarial Mathematics, University of Copenhagen
[35] Thampi KK, Jacob MJ (2010) On a class of renewal queueing and risk processes. The Journal of Risk Finance 11(2):204-220 · doi:10.1108/15265941011025206
[36] Touazi A, Benouaret Z, Aïssani D, Adjabi S (2017) Nonparametric estimation of the claim amount in the strong stability analysis of the classical risk model. Insurance: Math and Econom 74:78-83 · Zbl 1394.62150
[37] Tsitsiashvili GSh, Konstantinides DG (2001) Supertails in risk theory. Far Eastern Mathematical Journal 2:68-76
[38] Vatamidou E, Adan IJBF, Vlasiou M, Zwart B (2014) On the accuracy of phase-type approximations of heavy-tailed risk models. Scand Actuar J 2014(6):510-534 · Zbl 1401.62215 · doi:10.1080/03461238.2012.729154
[39] Zhang Z, Yang H, Yang H (2014) On a nonparametric estimator for ruin probability in the classical risk model. Scand Actuar J 4:309-338 · Zbl 1401.91217 · doi:10.1080/03461238.2012.691427
[40] Zolotarev V (1983) Probability metrics. Theory of Probability and its Applications 28(2):278-302 · Zbl 0533.60025 · doi:10.1137/1128025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.