×

Banded preconditioners for Riesz space fractional diffusion equations. (English) Zbl 1475.65079

In this paper, numerical methods for Toeplitz-like linear systems arising from the one- and two-dimensional Riesz space fractional diffusion equations are considered. Crank-Nicolson technique is applied to discretize the temporal derivative and apply certain difference operator to discretize the space fractional derivatives. For the one-dimensional problem, the corresponding coefficient matrix is the sum of an identity matrix and a product of a diagonal matrix and a symmetric Toeplitz matrix. They transform the linear systems to symmetric linear systems and introduce symmetric banded preconditioners. They prove that under mild assumptions, the eigenvalues of the preconditioned matrix are bounded above and below by positive constants. In particular, the lower bound of the eigenvalues is equal to 1 when the banded preconditioner with diagonal compensation is applied. The preconditioned conjugate gradient method is applied to solve relevant linear systems. Numerical results are presented to verify the theoretical results about the preconditioned matrices and to illustrate the efficiency of the proposed preconditioners.
In my opinion, this work is interesting and makes some progress in fast algorithm for solving fractional partial differential equation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
15B05 Toeplitz, Cauchy, and related matrices
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrawal, OP, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[2] Benson, DA; Wheatcraft, SW; Meerschaert, MM, Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 6, 1403-1412 (2000) · doi:10.1029/2000WR900031
[3] Benson, DA; Wheatcraft, SW; Meerschaert, MM, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 6, 1413-1423 (2000) · doi:10.1029/2000WR900032
[4] Bouchaud, JP; Georges, A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990) · doi:10.1016/0370-1573(90)90099-N
[5] Carreras, BA; Lynch, VE; Zaslavsky, GM, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8, 12, 5096-5103 (2001) · doi:10.1063/1.1416180
[6] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 4, 1743-1750 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[7] Chan, TF, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Comput., 9, 4, 766-771 (1988) · Zbl 0646.65042 · doi:10.1137/0909051
[8] Chen, MH; Deng, WH; Wu, YJ, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math., 70, 22-41 (2013) · Zbl 1283.65082 · doi:10.1016/j.apnum.2013.03.006
[9] Ding, H.; Li, C., High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71, 2, 759-784 (2017) · Zbl 1398.65030 · doi:10.1007/s10915-016-0317-3
[10] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307, 262-279 (2016) · Zbl 1352.65305 · doi:10.1016/j.jcp.2015.11.061
[11] Huang, FH; Liu, FW, The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Comput., 19, 1-2, 179 (2005) · Zbl 1085.35003 · doi:10.1007/BF02935797
[12] Jin, XQ, Preconditioning Techniques for Toeplitz systems (2010), Beijing: Higher Education Press, Beijing
[13] Laub, AJ, Matrix Analysis for Scientists and Engineers (2005), Philadelphia: SIAM, Philadelphia · Zbl 1077.15001 · doi:10.1137/1.9780898717907
[14] Lei, SL; Sun, HW, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725 (2013) · Zbl 1297.65095 · doi:10.1016/j.jcp.2013.02.025
[15] Li, C.; Deng, WH, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42, 3, 543-572 (2016) · Zbl 1347.65136 · doi:10.1007/s10444-015-9434-z
[16] Li, C.; Deng, WH, A new family of difference schemes for space fractional advection diffusion equation, Adv. Appl. Math. Mech., 9, 2, 282-306 (2017) · Zbl 1499.65611 · doi:10.4208/aamm.2015.m1069
[17] Li, CP; Zeng, FH, Numerical Methods for Fractional Calculus (2015), Cambridge: Chapman and Hall/CRC, Cambridge · Zbl 1326.65033 · doi:10.1201/b18503
[18] Lin, FR; Liu, WD, The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation, J. Comput. Appl. Math., 363, 77-91 (2020) · Zbl 1503.65176 · doi:10.1016/j.cam.2019.06.008
[19] Lin, FR; Yang, SW; Jin, XQ, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256, 109-117 (2014) · Zbl 1349.65314 · doi:10.1016/j.jcp.2013.07.040
[20] Lin, XL; Ng, MK; Sun, HW, A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl., 38, 4, 1580-1614 (2017) · Zbl 1381.65030 · doi:10.1137/17M1115447
[21] Lin, XL; Ng, MK; Sun, HW, Efficient preconditioner of one-sided space fractional diffusion equation, BIT Numer. Math., 58, 3, 729-748 (2018) · Zbl 1404.65136 · doi:10.1007/s10543-018-0699-8
[22] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[23] Meerschaert, MM; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 1, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[24] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[25] Moghaderi, H.; Dehghan, M.; Donatelli, M.; Mazza, M., Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations, J. Comput. Phys., 350, 992-1011 (2017) · Zbl 1380.65240 · doi:10.1016/j.jcp.2017.08.064
[26] Mortici, C., Methods and algorithms for approximating the Gamma function and related functions. A survey. Part I: Asymptotic series, Ann. Acad. Rom. Sci. Ser. Math. Appl., 6, 173 (2014) · Zbl 1305.33004
[27] Pan, JY; Ke, RH; Ng, MK; Sun, HW, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36, 6, A2698-A2719 (2014) · Zbl 1314.65112 · doi:10.1137/130931795
[28] Pang, HK; Sun, HW, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703 (2012) · Zbl 1243.65117 · doi:10.1016/j.jcp.2011.10.005
[29] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Philadelphia: SIAM, Philadelphia · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[30] Sousa, E.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90, 22-37 (2015) · Zbl 1326.65111 · doi:10.1016/j.apnum.2014.11.007
[31] Tadjeran, C.; Meershaert, MM; Scheffler, HP, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 1, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[32] Tian, W.; Zhou, H.; Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84, 294, 1703-1727 (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[33] Wang, H.; Wang, K.; Sircar, T., A direct \(\cal{O}(N\log^2N)\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 21, 8095-8104 (2010) · Zbl 1198.65176 · doi:10.1016/j.jcp.2010.07.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.