Breiding, Paul; Çelik, Türkü Özlüm; Duff, Timothy; Heaton, Alexander; Maraj, Aida; Sattelberger, Anna-Laura; Venturello, Lorenzo; Yürük, Oǧuzhan Nonlinear algebra and applications. (English) Zbl 1522.13040 Numer. Algebra Control Optim. 13, No. 1, 81-116 (2023). In this article, some overview of explicit applications of Non-linear Algebra in different areas of sciences and engineering is presented. Reviewer: Hanieh Keneshlou (Leipzig) Cited in 1 Document MSC: 13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.) 14Q20 Effectivity, complexity and computational aspects of algebraic geometry 62R01 Algebraic statistics Keywords:nonlinear algebra; polynomial optimization; partial differential equations; algebraic statistics; integrable systems; configuration spaces; reaction networks; computer vision; tensor decompositions Software:PHCpack; SumsOfSquares; SageMath; CoNtRol; SE-Sync; Hom4PS-3; R; Magma; crntwin; SINGULAR; Macaulay2; dmod.lib; DiscreteStatisticalModelsWithRationalMLE; NumericalAlgebraicGeometry; gfun; Bertini; Julia; AlgebraicOptimization; GraphicalModels; hgm R; Theta.jl; hgm; Maple; NAG4M2; ore_algebra × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] S. P. G. Abenda Grinevich, Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline soliton, Selecta Math., 25, 1-64 (2019) · Zbl 1426.37052 · doi:10.1007/s00029-019-0488-5 [2] M. J. Ablowitz, Line soliton interactions, Available at: https://sites.google.com/site/ablowitz/line-solitons. [3] M. J. D. E. Ablowitz Baldwin, Nonlinear shallow ocean-wave soliton interactions on flat beaches, Phys. Rev. E (3), 86, 036305 (2012) [4] M. F. A. L. A.-L. B. Adamer Lőrincz Sattelberger Sturmfels, Algebraic analysis of rotation data, Algebraic Statistics, 11, 189-211 (2020) · Zbl 1461.62220 · doi:10.2140/astat.2020.11.189 [5] M. J. Adler Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 61, 1-30 (1978) · Zbl 0428.35067 [6] S. Y. N. I. B. S. M. R. Agarwal Furukawa Snavely Simon Curless Seitz Szeliski, Building Rome in a day, Communications of the ACM, 54, 105-112 (2011) [7] S. Agarwal, A. Pryhuber, R. Sinn and R. R. Thomas, The chiral domain of a camera arrangement, arXiv: 2003.09265, 2020. · Zbl 07632073 [8] D. C. Agostini Améndola, Discrete Gaussian distributions via theta functions, SIAGA, 2, 1-30 (2019) · Zbl 1425.60020 · doi:10.1137/18M1164937 [9] D. Agostini, T. Ö. Çelik and D. Eken, Numerical reconstruction of curves from their Jacobians, arXiv: 2103.03138, 2021. · Zbl 1506.14115 [10] D. Agostini, T. Ö. Çelik, J. Struwe and B. Sturmfels, Theta surfaces, Vietnam J. Math., 2020. [11] D. Agostini, T. Ö. Çelik and B. Sturmfels, The Dubrovin threefold of an algebraic curve, arXiv: 2005.08244, 2020. To appear in Nonlinearity. · Zbl 1465.14036 [12] D. L. Agostini Chua, Computing theta functions with Julia, J. Softw. Algebra Geom., 11, 41-51 (2021) · Zbl 1483.14002 · doi:10.2140/jsag.2021.11.41 [13] D. Agostini, C. Fevola, Y. Mandelshtam and B. Sturmfels, KP solitons from tropical limits, arXiv: 2101.10392, 2021. · Zbl 1495.14046 [14] C. L. Aholt Oeding, The ideal of the trifocal variety, Math. Comp., 83, 2553-2574 (2014) · Zbl 1347.13011 · doi:10.1090/S0025-5718-2014-02842-1 [15] C. B. R. Aholt Sturmfels Thomas, A Hilbert scheme in computer vision, Canad. J. Math., 65, 961-988 (2013) · Zbl 1284.13035 · doi:10.4153/CJM-2012-023-2 [16] R. Ait El Manssour and A.-L. Sattelberger, Combinatorial differential algebra of \(x^p\), arXiv: 2102.03182, 2021. [17] E. S. S. J. A. S. Allman Petrović Rhodes Sullivant, Identifiability of two-tree mixtures for group-based models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 710-722 (2010) [18] C. Améndola, L. D. García-Puente, R. Homs, O. Kuznetsova and H. J. Motwani, Computing maximum likelihood estimates for Gaussian graphical models with Macaulay2, arXiv: 2012.11572, 2020. · Zbl 1514.62040 [19] C. K. P. A. Améndola Kohn Reichenbach Seigal, Invariant theory and scaling algorithms for maximum likelihood estimation, SIAM Journal on Applied Algebra and Geometry, 5, 304-337 (2021) · Zbl 1518.14065 · doi:10.1137/20M1328932 [20] E. Angelini, On complex and real identifiability of tensors, Rivista di Matematica della Universita di Parma, 8, 367-377 (2017) · Zbl 1391.14104 [21] S. Aoki, H. Hara and A. Takemura, Markov Bases in Algebraic Statistics, Volume 199, Springer Science & Business Media, 2012. · Zbl 1304.62015 [22] F. B. A. Arrigoni Rossi Fusiello, Spectral synchronization of multiple views in SE (3), SIAM Journal on Imaging Sciences, 9, 1963-1990 (2016) · Zbl 1409.68299 · doi:10.1137/16M1060248 [23] D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Bertini: Software for Numerical Algebraic Geometry, Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5. [24] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its and V. B. Matveev, Algebro-Geometric Approach to Non- Linear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994. · Zbl 0809.35001 [25] C. P. N. Beltrán Breiding Vannieuwenhoven, Pencil-based algorithms for tensor rank decomposition are not stable, SIAM J. Matrix Anal. Appl., 40, 02 (2019) · Zbl 1451.14170 · doi:10.1137/18M1200531 [26] A. Bernardi, C. De Lazzari and F. Gesmundo, Dimension of tensor network varieties, arXiv: 2101.03148, 2021. [27] D. I. S. Bernstein Sullivant, Unimodular binary hierarchical models, J. Combin. Theory Ser. A, 123, 97-125 (2017) · Zbl 1354.05150 · doi:10.1016/j.jctb.2016.11.003 [28] J. A. S. V. B. Bezanson Edelman Karpinski Shah, Julia: A fresh approach to numerical computing, SIAM Review, 59, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671 [29] F. A. M. Bihan Dickenstein Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, 542, 367-411 (2020) · Zbl 1453.92120 · doi:10.1016/j.jalgebra.2019.10.002 [30] J.-E. Björk, Analytic \({\mathcal{D}} \)-Modules and Applications, Volume 247 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993. · Zbl 0805.32001 [31] G. Blekherman, P. Parrilo and R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry, Society for Industrial and Applied Mathematics, 2012. [32] T. Boege, J. I. Coons, C. Eur, A. Maraj and F. Röttger, Reciprocal maximum likelihood degrees of Brownian motion tree models, arXiv: 2009.11849, 2020. [33] W. J. C. Bosma Cannon Playoust, The Magma algebra system, I. The user language, J. Symbolic Comput., 24, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125 [34] P. Breiding and S. Timme, Homotopy continuation, jl: A package for homotopy continuation in Julia, In Mathematical Software - ICMS 2018, Springer International Publishing, (2018), 458-465. · Zbl 1396.14003 [35] N. Bruin, J. Sijsling and A. Zotine, Numerical computation of endomorphism rings of Jacobians, In 13th Algorithmic Number Theory Symposium, volume 2 of Open Book Series, (2019), 155-171. · Zbl 1516.14060 [36] C. H. J. Bruschek Mourtada Schepers, Arc spaces and Rogers-Ramanujan identities, Ramanujan J., 30, 9-38 (2013) · Zbl 1281.14003 · doi:10.1007/s11139-012-9401-y [37] V. V. D. Buchstaber Enolski Leykin, Rational analogs of abelian functions, Funct. Anal. Appl., 33, 83-94 (1999) · Zbl 1056.14049 · doi:10.1007/BF02465189 [38] N. Budur, Bernstein-Sato ideals and local systems, Ann. Inst. Fourier (Grenoble), 65, 549-603 (2015) · Zbl 1332.32038 [39] N. M. Z. Budur Mustaţǎ Teitler, The monodromy conjecture for hyperplane arrangements, Geom. Dedicata, 153, 131-137 (2011) · Zbl 1227.32035 · doi:10.1007/s10711-010-9560-1 [40] N. Budur, R. van der Veer, L. Wu and P. Zhou, Zero loci of Bernstein-Sato ideals, arXiv: 1907.04010, 2019. To appear in Invent. Math. [41] B. F. Caviness and J. R. Johnson, Quantifier Elimination And Cylindrical Algebraic Decomposition, Springer Science & Business Media, 2012. [42] T. Ö. Çelik, Thomae-Weber formula: Algebraic computations of theta constants, Int. Math. Res. Not. IMRN, rnz302. [43] T. Ö. A. G. B. L. Çelik Jamneshan Montúfar Sturmfels Venturello, Wasserstein distance to independence models, J. Symbolic Comput., 104, 855-873 (2021) · Zbl 1460.62205 · doi:10.1016/j.jsc.2020.10.005 [44] T. Ö. A. G. B. L. Çelik Jamneshan Montúfar Sturmfels Venturello, Optimal transport to a variety, Mathematical Aspects of Computer and Information Sciences, Springer Lecture Notes in Computer Science, 11989, 364-381 (2020) · Zbl 07441083 · doi:10.1007/s00454-021-00322-3 [45] C. Chen, J. H. Davenport, M. Moreno Maza, B. Xia and R. Xiao, Computing with semi-algebraic sets represented by triangular decomposition, In Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, (2011), 75-82. · Zbl 1323.14029 [46] T. Chen, T.-L. Lee and T.-Y. Li, Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods, In Mathematical Software - ICMS 2014 (eds. H. Hong and C. Yap), Springer Berlin Heidelberg, (2014), 183-190. · Zbl 1434.65065 [47] L. G. N. Chiantini Ottaviani Vannieuwenhoven, On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc., 369, 4021-4042 (2017) · Zbl 1360.14021 · doi:10.1090/tran/6762 [48] Y. Cid-Ruiz and B. Sturmfels, Primary decomposition with differential operators, arXiv: 2101.03643, 2021. · Zbl 1524.13078 [49] D. T. P. Cifuentes Kahle Parrilo, Sums of squares in Macaulay2, J. Softw. Algebra Geom., 10, 17-24 (2020) · Zbl 1439.13068 · doi:10.2140/jsag.2020.10.17 [50] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, in Automata Theory and Formal Languages, Springer, (1975), 134-183. · Zbl 0318.02051 [51] R. Connelly, Generic global rigidity, Discrete Comput. Geom., 33, 549-563 (2005) · Zbl 1072.52016 · doi:10.1007/s00454-004-1124-4 [52] R. H. Connelly Servatius, Higher-order rigidity—what is the proper definition?, Discrete Comput. Geom., 11, 193-200 (1994) · Zbl 0793.52005 · doi:10.1007/BF02574003 [53] C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751. [54] C. D. J. J. Conradi Flockerzi Raisch Stelling, Subnetwork analysis reveals dynamic features of complex (bio)chemical networks, Proc. Nat. Acad. Sci. USA, 104, 19175-19180 (2007) [55] C. M. A. Conradi Mincheva Shiu, Emergence of oscillations in a mixed-mechanism phosphorylation system, Bull. Math. Biol., 81, 1829-1852 (2019) · Zbl 1415.92092 · doi:10.1007/s11538-019-00580-6 [56] J. I. Coons, J. Cummings, B. Hollering and A. Maraj, Generalized cut polytopes for binary hierarchical models, arXiv: 2008.00043, 2020. [57] J. I. S. Coons Sullivant, Quasi-independence models with rational maximum likelihood estimator, J. Symbolic Comput., 104, 917-941 (2021) · Zbl 1461.62226 · doi:10.1016/j.jsc.2020.10.006 [58] J. I. S. Coons Sullivant, Toric geometry of the Cavender-Farris-Neyman model with a molecular clock, Adv. in Appl. Math, 123, 102119 (2021) · Zbl 1457.92125 · doi:10.1016/j.aam.2020.102119 [59] S. C. Coutinho, A Primer of Algebraic \(D\)-Modules, Volume 33 of Student Texts, London Mathematical Society, 1995. · Zbl 0848.16019 [60] D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics. Springer New York, 4th edition, 2007. · Zbl 1118.13001 [61] G. J. W. R. J. Craciun Helton Williams, Homotopy methods for counting reaction network equilibria, Math. Biosci, 216, 140-149 (2008) · Zbl 1153.92015 · doi:10.1016/j.mbs.2008.09.001 [62] L. De Lathauwer, Blind separation of exponential polynomials and the decomposition of a tensor in rank-\((L_r, L_r, 1)\) terms, SIAM J. Matrix Anal. Appl., 32, 1451-1474 (2011) · Zbl 1239.15016 · doi:10.1137/100805510 [63] J. A. De Loera, J. Rambau and F. Santos, Triangulations, Volume 25 of Algorithms and Computations in Mathematics, Springer-Verlag Berlin Heidelberg, 2010. · Zbl 1207.52002 [64] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-3 —A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2020. [65] B. M. A. M. M. Deconinck Heil Bobenko van Hoeij Schmies, Computing Riemann theta functions, Math. Comp., 73, 1417-1442 (2004) · Zbl 1092.33018 · doi:10.1090/S0025-5718-03-01609-0 [66] M. Demazure, Sur deux problemes de reconstruction, Technical Report RR-0882, INRIA, July 1988, Available at: https://hal.inria.fr/inria-00075672. [67] H. Derksen, V. Makam and M. Walter, Maximum likelihood estimation for tensor normal models via castling transforms, arXiv: 2011.03849, 2020. · Zbl 1505.13012 [68] P. B. et Diaconis Sturmfels al, Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26, 363-397 (1998) · Zbl 0952.62088 · doi:10.1214/aos/1030563990 [69] A. M. P. A. X. Dickenstein Millan Shiu Tang, Multistationarity in structured reaction networks, Bull. Math. Biol., 81, 1527-1581 (2019) · Zbl 1415.92083 · doi:10.1007/s11538-019-00572-6 [70] V. Dolotin and A. Morozov, Introduction to Non-linear Algebra, World Scientific Publishing, Hackensack, NJ, 2007. · Zbl 1134.15001 [71] I. L. D. Domanov Lathauwer, On Uniqueness and computation of the decomposition of a tensor into multilinear rank-\((1, L_r, L_r)\) terms, SIAM J. Matrix Anal. Appl., 41, 747-803 (2020) · Zbl 1442.15042 · doi:10.1137/18M1206849 [72] P. M. A. C. Donnell Banaji Marginean Pantea, Control: an open source framework for the analysis of chemical reaction networks, Bioinformatics, 30, 1633-1634 (2014) [73] J. R. R. A. Draisma Eggermont Krone Leykin, Noetherianity for infinite-dimensional toric varieties, Algebra Number Theory, 9, 1857-1880 (2015) · Zbl 1354.13025 · doi:10.2140/ant.2015.9.1857 [74] J. E. G. B. R. R. Draisma Horobeţ Ottaviani Sturmfels Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math., 16, 99-149 (2016) · Zbl 1370.51020 · doi:10.1007/s10208-014-9240-x [75] J. S. P. et Draisma Kuhnt Zwiernik al, Groups acting on Gaussian graphical models, Ann. Statist., 41, 1944-1969 (2013) · Zbl 1292.62098 · doi:10.1214/13-AOS1130 [76] J. Draisma, G. Ottaviani and A. Tocino, Best rank-k approximations for tensors: generalizing Eckart-Young, Res. Math. Sci., (2018), 5-27. · Zbl 1417.15034 [77] E. C. Duarte Görgen, Equations defining probability tree models, J. Symbolic Comput., 99, 127-146 (2020) · Zbl 1451.13086 · doi:10.1016/j.jsc.2019.04.001 [78] E. O. B. Duarte Marigliano Sturmfels, Discrete statistical models with rational maximum likelihood etimates, Bernoulli, 27, 135-154 (2021) · Zbl 1465.62184 · doi:10.3150/20-BEJ1231 [79] B. Dubrovin, Theta functions and non-linear equations, Russian Math. Surveys, 36, 11-92 (1981) · Zbl 0549.58038 [80] T. Duff, K. Kohn, A. Leykin and T. Pajdla, PLMP-point-line minimal problems in complete multi-view visibility, In Proceedings of the IEEE International Conference on Computer Vision, (2019), 1675-1684. [81] S. Dye, K. Kohn, F. Rydell and R. Sinn, Maximum likelihood estimation for nets of conics, arXiv: 2011.08989, 2020. · Zbl 1481.14015 [82] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Volume XVII of Pure and Applied Mathematics, Wiley-Interscience Publishers, New York-London-Sydney, 1970. · Zbl 0195.10401 [83] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Volume 55 of Progress in Mathematics, Birkhäuser Boston, 1985. · Zbl 0554.10018 [84] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics. Springer New York, 2013. [85] P. Ellison, M. Feinberg, H. Ji, and D. Knight, Chemical reaction network toolbox, version 2.2, Available online at http://www.crnt.osu.edu/CRNTWin, 2012. [86] R. Fabbri, T. Duff, H. Fan, M. H. Regan, D. d. C. d. Pinho, E. Tsigaridas, C. W. Wampler, J. D. Hauenstein, P. J. Giblin, B. Kimia, A. Leykin and T. Pajdla, TRPLP - Trifocal Relative Pose from Lines at Points, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. [87] M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal., 132, 311-370 (1995) · Zbl 0853.92024 · doi:10.1007/BF00375614 [88] M. Feinberg, Foundations of Chemical Reaction Network Theory, Volume 202 of Applied Mathematical Sciences, Springer International Publishing, 2019. · Zbl 1420.92001 [89] E. Feliu, Injectivity, multiple zeros, and multistationarity in reaction networks, Proc. Roy. Soc. Edinburgh Sect. A, doi: 10.1098/rspa.2014.0530,2014. MR3298836 · Zbl 1371.92147 [90] E. Feliu, N. Kaihnsa, T. de Wolff and O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dynam. Differential Equations, 2020. · Zbl 1496.92028 [91] C. Fevola, Y. Mandelshtam and B. Sturmfels, Pencils of quadrics: Old and new, arXiv: 2009.04334, 2020. · Zbl 1480.14037 [92] M. A. R. C. Fischler Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24, 381-395 (1981) · doi:10.1145/358669.358692 [93] G. J. G. Fløystad Kileel Ottaviani, The Chow form of the essential variety in computer vision, J. Symbolic Comput., 86, 97-119 (2018) · Zbl 1380.68369 · doi:10.1016/j.jsc.2017.03.010 [94] J. C. C. Frauendiener Jaber Klein, Efficient computation of multidimensional theta functions, J. Geom. Phys., 127, 147-158 (2019) · Zbl 1444.33011 · doi:10.1016/j.geomphys.2019.03.011 [95] L. D. M. B. Garcia Stillman Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput., 39, 331-355 (2005) · Zbl 1126.68102 · doi:10.1016/j.jsc.2004.11.007 [96] P. Gaudry, Fast genus 2 arithmetic based on Theta functions, J. Math. Cryptol. J., 3, 243-265 (2007) · Zbl 1145.11048 · doi:10.1515/JMC.2007.012 [97] D. C. B. et Geiger Meek Sturmfels al, On the toric algebra of graphical models, Ann. Statist., 34, 1463-1492 (2006) · Zbl 1104.60007 · doi:10.1214/009053606000000263 [98] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994. · Zbl 0827.14036 [99] C. Görgen, A. Maraj and L. Nicklasson, Staged tree models with toric structure, 2107.04516. · Zbl 1491.14074 [100] P. C. and A.-L. Görlach Lehn Sattelberger, Algebraic analysis of the hypergeometric function \(_1F_1\) of a matrix argument, Beiträge Algebra Geom., 62, 397-427 (2021) · Zbl 1478.33007 · doi:10.1007/s13366-020-00546-z [101] S. J. A. D. D. P. Gortler Healy Thurston, Characterizing generic global rigidity, Amer. J. Math., 132, 897-939 (2010) · Zbl 1202.52020 · doi:10.1353/ajm.0.0132 [102] H.-C. K. Graf von Bothmer Ranestad, A general formula for the algebraic degree in semidefinite programming, Bull. Math. Biol., 41, 193-197 (2009) · Zbl 1185.14047 · doi:10.1112/blms/bdn114 [103] J. Graver, B. Servatius and H. Servatius, Combinatorial Rigidity, Volume 2 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. · Zbl 0788.05001 [104] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/, 2020. [105] G. Greuel, G. Pfister, O. Bachmann, C. Lossen and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer Nature Book Archives Millennium. Springer, 2002. · Zbl 1023.13001 [106] C. L. G. H. F. P. T. M. Häne Heng Lee Fraundorfer Furgale Sattler Pollefeys, 3D visual perception for self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection, Image and Vision Computing, 68, 14-27 (2017) [107] M. B. F. T. J. I. Härkönen Hollering Kashani Rodriguez, Algebraic optimization degree, ACM Commun. Comput. Algebra, 54, 44-48 (2020) · Zbl 1499.14003 [108] R. F. Hartley Kahl, Critical configurations for projective reconstruction from multiple views, Int. J. Comput. Vis., 71, 5-47 (2007) · Zbl 1477.68366 [109] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, 2nd edition, 2003. · Zbl 0956.68149 [110] R. I. Hartley, Chirality, Int. J. Comput. Vis., 26, 41-61 (1998) [111] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer New York, 2013. [112] H. Y. N. A. Hashiguchi Numata Takayama Takemura, The holonomic gradient method for the distribution function of the largest root of a Wishart matrix, J. Multivariate Anal., 117, 296-312 (2013) · Zbl 1282.33010 · doi:10.1016/j.jmva.2013.03.011 [113] J. D. Hauenstein and A. C. Liddell, A hybrid symbolic-numeric approach to exceptional sets of generically zero-dimensional systems, In Proceedings of the 2015 International Workshop on Parallel Symbolic Computation, PASCO ’15, Association for Computing Machinery, (2015), 53-60. [114] K. Heal, J. Wang, S. J. Gortler and T. Zickler, A lighting-invariant point processor for shading, (2020), 94-102. [115] A. Heaton and S. Timme, Catastrophe in elastic tensegrity frameworks, arXiv: 2009.13408, 2020. · Zbl 1508.14066 [116] D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32, 342-350 (1888) · JFM 20.0198.02 · doi:10.1007/BF01443605 [117] C. J. S. Hillar Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math., 229, 1-25 (2012) · Zbl 1233.13012 · doi:10.1016/j.aim.2011.08.009 [118] R. Hirota, The Direct Method in Soliton Theory (2004) · doi:10.1017/CBO9780511543043 [119] N. G. R. S. Hitchin Segal Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces (1999) [120] B. S. Hollering Sullivant, Identifiability in phylogenetics using algebraic matroids, J. Symbolic Comput., 104, 142-158 (2021) · Zbl 1455.92103 · doi:10.1016/j.jsc.2020.04.012 [121] S. S. Hoşten Sullivant, Gröbner bases and polyhedral geometry of reducible and cyclic models, J. Combin. Theory Ser. A, 100, 277-301 (2002) · Zbl 1044.62065 · doi:10.1006/jcta.2002.3301 [122] R. Hotta, K. Takeuchi, and T. Tanisaki, \(D\)-Modules, Perverse Sheaves, and Representation Theory, Volume 236 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. · Zbl 1136.14009 [123] J. Huh, Varieties with maximum likelihood degree one, J. Algebr. Stat., 5, 1-17 (2014) · Zbl 1346.14118 · doi:10.18409/jas.v5i1.22 [124] J. Huh and B. Sturmfels, Likelihood geometry, In Combinatorial Algebraic Geometry, volume 2108 of Lecture notes in mathematics, Springer, New York, (2014), 63-117. · Zbl 1328.14004 [125] B. Hunyadi, D. Camps, L. Sorber, W. V. Paesschen, M. D. Vos, S. V. Huffel and L. D. Lathauwer, Block term decomposition for modelling epileptic seizures, EURASIP J. Adv. Signal Process., 139 (2014). [126] A. Hurwitz, Ueber den Vergleich des arithmetischen und des geometrischen Mittels, J. Reine Angew. Math., 108, 266-268 (1891) · JFM 23.0263.01 · doi:10.1515/crll.1891.108.266 [127] S. Iliman and T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on circuits, Res. Math. Sci., 3 (2016). · Zbl 1415.11071 [128] B. A. Joshi Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10, 47-67 (2015) · Zbl 1371.92148 · doi:10.1051/mmnp/201510504 [129] F. D. Kahl Henrion, Globally optimal estimates for geometric reconstruction problems, Int. J. Comput. Vis., 74, 3-15 (2007) · Zbl 1477.68382 [130] M. Kashiwara, \(B\)-functions and holonomic systems, rationality of roots of \(B\)-functions, Invent. Math., 38, 33-53 (1976) · Zbl 0354.35082 · doi:10.1007/BF01390168 [131] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20, 319-365 (1984) · Zbl 0566.32023 · doi:10.2977/prims/1195181610 [132] M. Kauers, M. Jaroschek and F. Johansson, Ore polynomials in Sage, arXiv: 1306.4263, 2013. · Zbl 1439.16049 [133] J. Kileel, Minimal problems for the calibrated trifocal variety, SIAM J. Appl. Algebra Geom., 1, 575-598 (2017) · Zbl 1386.14185 · doi:10.1137/16M1104482 [134] Y. Kodama, KP Solitons and the Grassmannians. Combinatorics and Geometry and Two-dimensional Wave Patterns, Volume 22 of Briefs in Mathematical Physics, Springer, 2017. · Zbl 1372.35266 [135] Y. L. Kodama Williams, KP solitons and total positivity for the Grassmannian, Invent. Math., 198, 637-699 (2014) · Zbl 1306.35109 · doi:10.1007/s00222-014-0506-3 [136] Y. Y. Kodama Xie, Space curves and solitons of the KP hierarchy: I. The l-th generalized KdV hierarchy, SIGMA, 17, 024 (2021) · Zbl 1468.37052 · doi:10.3842/SIGMA.2021.024 [137] E. R. Kolchin, Differential Algebra and Algebraic Groups (1973) · Zbl 0264.12102 [138] C. Koutschan, Holonomic functions (user’s guide), Technical Report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria, 2010. [139] T. Koyama, The annihilating ideal of the Fisher integral, Kyushu J. Math., 74, 415-427 (2020) · Zbl 1470.16048 [140] I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys, 32, 44-48 (1977) [141] R. A. A. Krone Leykin Snowden, Hilbert series of symmetric ideals in infinite polynomial rings via formal languages, J. Algebra, 485, 353-362 (2017) · Zbl 1401.13048 · doi:10.1016/j.jalgebra.2017.05.014 [142] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., 18, 95-138 (1977) · Zbl 0364.15021 · doi:10.1016/0024-3795(77)90069-6 [143] Z. Kukelova, M. Bujnak and T. Pajdla, Automatic generator of minimal problem solvers, In European Conference on Computer Vision, Springer, (2008), 302-315. [144] Z. Kukelova and T. Pajdla, A minimal solution to the autocalibration of radial distortion, In 2007 IEEE Conference on Computer Vision and Pattern Recognition, (2007), 1-7. [145] P. Lairez, Computing periods of rational integrals, Math. Comp., 85, 1719-1752 (2016) · Zbl 1337.68301 · doi:10.1090/mcom/3054 [146] P. Lairez, M. Mezzarobba and M. Safey El Din, Computing the volume of compact semi-algebraic sets, In ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Beijing, China, July 2019, ACM. · Zbl 1467.14139 [147] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math., 4, 331-340 (1970) · Zbl 0213.51903 · doi:10.1007/BF01534980 [148] J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, AMS, Providence, Rhode Island, 2012. · Zbl 1238.15013 [149] V. Larsson, K. Astrom and M. Oskarsson, Efficient solvers for minimal problems by syzygy-based reduction, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 820-829. [150] J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Volume 1 of Imperial College Press Optimization, World Scientific, 2010. · Zbl 1211.90007 [151] L. D. Lathauwer, Decompositions of a higher-order tensor in block terms - Part II: Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30, 1033-1066 (2008) · Zbl 1177.15032 · doi:10.1137/070690729 [152] M. N. Laurent Kellershohn, Multistability: a major means of differentiation and evolution in biological systems, Trends Biochem. Sciences, 24, 418-422 (1999) [153] S. C. P. et Lauritzen Uhler Zwiernik al., Maximum likelihood estimation in Gaussian models under total positivity, Ann. Statist., 47, 1835-1863 (2019) · Zbl 1467.62092 · doi:10.1214/17-AOS1668 [154] V. Levandovskyy and J. Martín-Morales, dmod_lib: A \(\mathtt{Singular: Plural}\) library for algorithms for algebraic \(D\)-modules, https://www.singular.uni-kl.de/Manual/4-2-0/sing_537. [155] A. Leykin, Numerical algebraic geometry for macaulay2, J. Softw. Algebra Geom., 3, 5-10 (2011) · Zbl 1311.14057 · doi:10.2140/jsag.2011.3.5 [156] M. L. Lieblich Van Meter, Two Hilbert schemes in computer vision, SIAM J. Appl. Algebra Geom., 4, 297-321 (2020) · Zbl 1440.14056 · doi:10.1137/18M1200117 [157] J. Little, Translation manifolds and the converse to Abel’s theorem, Compos. Math., 49, 147-171 (1983) · Zbl 0521.14017 [158] Q. Liu, Algebraic Geometry and Arithmetic Curves (2006) · Zbl 1103.14001 [159] M. Z. Luxton Qu, Some results on tropical compactifications, Trans. Amer. Math. Soc., 363, 4853-4876 (2011) · Zbl 1230.14014 · doi:10.1090/S0002-9947-2011-05254-2 [160] D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Volume 161 of Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 2015. · Zbl 1321.14048 [161] P. Maisonobe, Filtration relative, l’idéal de Bernstein et ses pentes, hal-01285562v2, 2016. [162] Maplesoft, A division of Waterloo Maple Inc., Maple, 2019. [163] A. Maraj, Algebraic and Geometric Properties of Hierarchical Models, PhD Thesis, 2020. [164] A. U. Maraj Nagel, Equivariant Hilbert series for hierarchical models, Algebraic Statistics, 12, 21-42 (2021) · Zbl 1465.13025 · doi:10.2140/astat.2021.12.21 [165] M. Marshall, Positive Polynomials and Sums Of Squares, Volume 146 of Mathematical Surveys and Monographs, American Mathematical Society, 2008. · Zbl 1169.13001 [166] Max Planck Institute for Mathematics in the Sciences, Mathrepo. Mathematical data and software, Repository website of the MPI MiS, https://mathrepo.mis.mpg.de/. [167] L. G. J. I. B. Maxim Rodriguez Wang, Euclidean distance degree of the multiview variety, SIAM J. Appl. Algebra Geom., 4, 28-48 (2020) · Zbl 1437.13049 · doi:10.1137/18M1233406 [168] Z. Mebkhout, Une équivalence de catégories, Compos. Math., 51, 51-62 (1984) · Zbl 0566.32021 [169] M. Michałek and B. Sturmfels, Lecture: Introduction to Nonlinear Algebra, Available at https://youtu.be/1EryuvBLY80, 2018. [170] M. Michałek and B. Sturmfels, Invitation to Nonlinear Algebra, Volume 211 of Graduate Studies in Mathematics, American Mathematical Society, 2021. Available at https://personal-homepages.mis.mpg.de/michalek/NonLinearAlgebra.pdf. · Zbl 1477.14001 [171] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Volume 227 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2005. · Zbl 1090.13001 [172] P. Misra and S. Sullivant, Gaussian graphical models with toric vanishing ideals, Ann. Inst. Statist. Math., (2020), 1-29. · Zbl 1469.62420 [173] R. J. Muirhead, Systems of partial differential equations for hypergeometric functions of matrix argument, Ann. Math. Statist., 41, 991-1001 (1970) · Zbl 0225.62078 · doi:10.1214/aoms/1177696975 [174] R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. · Zbl 0556.62028 [175] D. Mumford, Tata Lectures on Theta I, Modern Birkhäuser Classics. Birkhäuser Boston, 2007. [176] U. T. Nagel Römer, Equivariant Hilbert series in non-Noetherian polynomial rings, J. Algebra, 486, 204-245 (2017) · Zbl 1372.13016 · doi:10.1016/j.jalgebra.2017.05.011 [177] R. Nagpal and A. Snowden, Symmetric ideals of the infinite polynomial ring, arXiv: 2107.13027, 2021. · Zbl 1436.20096 [178] H. K. M. K. T. N. A. Nakayama Nishiyama Noro Ohara Sei Takayama Takemura, Holonomic gradient descent and its application to the Fisher-Bingham integral, Adv. in Appl. Math., 47, 639-658 (2011) · Zbl 1226.90137 · doi:10.1016/j.aam.2011.03.001 [179] A. Nakayashiki, On Algebraic Expansions of Sigma Functions for \((n, s)\) curves, Asian J. Math., 14, 175-212 (2010) · Zbl 1214.14028 · doi:10.4310/AJM.2010.v14.n2.a2 [180] A. Nakayashiki, Degeneration of trigonal curves and solutions of the KP-hierarchy, Nonlinearity, 31, 3567-3590 (2018) · Zbl 1398.37081 · doi:10.1088/1361-6544/aabf00 [181] J. K. Nie Ranestad, Algebraic degree of polynomial optimization, SIAM J. Optim., 20, 485-502 (2009) · Zbl 1190.14051 · doi:10.1137/080716670 [182] J. K. B. Nie Ranestad Sturmfels, The algebraic degree of semidefinite programming, Math. Program., 122, 379-405 (2010) · Zbl 1184.90119 · doi:10.1007/s10107-008-0253-6 [183] D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis And Machine Intelligence, 26, 756-770 (2004) [184] M. Noro, System of partial differential equations for the hypergeometric function \(_1F_1\) of a matrix argument on diagonal regions, ISSAC’16: Proceedings of the ACM on International Symposium of Symbolic and Algebraic Computation, July 2016,381-388. · Zbl 1429.35052 [185] S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons: The Inverse Scattering Method, Monographs in Contemporary Mathematics, Springer, 1984. · Zbl 0598.35002 [186] F. Ollivier, Standard bases of differential ideals, Lecture Notes in Comput. Sci., 508, 304-321 (1990) · Zbl 0737.13009 · doi:10.1007/3-540-54195-0_60 [187] G. Ottaviani and P. Reichenbach, Tensor rank and complexity, arXiv: 2004.01492, 2020. [188] G. L. Ottaviani Sodomaco, The distance function from a real algebraic variety, Comput. Aided Geom. Design, 82, 101927 (2020) · Zbl 1453.65046 · doi:10.1016/j.cagd.2020.101927 [189] E. M. M. H. N. B. I. A. Ozbudak Thattai Lim Shraiman Van Oudenaarden, Multistability in the lactose utilization network of escherichia coli, Nature, 427, 737-740 (2004) [190] V. P. Palamodov, Linear Differential Qperators with Constant Coefficients, Volume 168 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York-Berlin, 1970. · Zbl 0191.43401 [191] E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Trans. Intell. Syst. Technol., 8 (2016). [192] M. A. A. and C. Pérez Millán Dickenstein Shiu Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol., 74, 1027-1065 (2012) · Zbl 1251.92016 · doi:10.1007/s11538-011-9685-x [193] S. Petrović, What is... a markov basis?, Notices of the American Mathematical Society, 66, 1088-1092 (2019) · Zbl 1426.62195 [194] G. H. Pistone Wynn, Generalised confounding with grobner bases, Biometrika, 83, 653-666 (1996) · Zbl 0928.62060 · doi:10.1093/biomet/83.3.653 [195] H. Pollaczek-Geiringer, Über die Gliederung ebener Fachwerke, J. Appl. Math. Mech., 7, 58-72 (1927) · JFM 53.0743.02 [196] A. Pryhuber, R. Sinn and R. R. Thomas, Existence of two view chiral reconstructions, arXiv: 2011.07197, 2020. [197] Y. P. L.-H. Qi Comon Lim, Semialgebraic geometry of nonnegative tensor rank, SIAM J. Matrix Anal. Appl., 37, 1556-1580 (2016) · Zbl 1349.14183 · doi:10.1137/16M1063708 [198] R Core Team, \( \mathtt{R} \): A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. [199] O. N. Regev Stephens-Davidowitz, An inequality for Gaussians on lattices, SIAM J. Discrete Math., 31, 749-757 (2017) · Zbl 1395.11105 · doi:10.1137/15M1052226 [200] T. Reichelt, M. Schulze, C. Sevenheck and U. Walther, Algebraic aspects of hypergeometric differential equations, Beiträge Algebra Geom., 2021. · Zbl 1468.14042 [201] J. F. Ritt, Differential Algebra, Volume 14 of American Mathematical Society: Colloquium Publications, American Mathematical Society, 1950. · Zbl 0037.18402 [202] A. A. Rontogiannis, E. Kofidis and P. Giampouras, Block-term tensor decomposition: Model selection and computation, arXiv: 2002.09759, 2020. [203] D. M. L. A. S. and J. J. Rosen Carlone Bandeira Leonard, SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group, The International Journal of Robotics Research, 38, 95-125 (2019) [204] C. Sabbah, Proximité évanescente. I. La structure polaire dun \(D\)-module, Compositio Math., 62, 283-328 (1987) · Zbl 0622.32012 [205] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, volume 6 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, 2000. · Zbl 0946.13021 [206] B. P. Salvy Zimmermann, \( \mathtt{gfun} \): A maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software, 20, 163-177 (1994) · Zbl 0888.65010 [207] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, In Nonlinear Partial Differential Equations in Applied Science; Proceedings of The U.S.-Japan Seminar, Tokyo, 1982, North-Holland Mathematics Studies, North-Holland, (1983), 259-271. · Zbl 0528.58020 [208] A.-L. Sattelberger and B. Sturmfels, \(D\)-modules and holonomic functions, arXiv: 1910.01395, 2019. [209] A.-L. Sattelberger and R. van der Veer, Maximum likelihood estimation from a tropical and a Bernstein-Sato perspective, arXiv: 2101.03570, 2021. [210] G. G. Segal Wilson, Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Etudes Sci., 61, 5-65 (1985) · Zbl 0592.35112 [211] H. S. R. S. Segal Grushevsky Manni, An explicit solution to the weak Schottky problem, Algebr. Geom., 8, 358-373 (2021) · Zbl 1454.14087 · doi:10.14231/ag-2021-009 [212] T. H. A. K. N. Sei Shibata Takemura Ohara Takayama, Properties and applications of Fisher distribution on the rotation group, J. Multivariate Anal., 116, 440-455 (2013) · Zbl 1283.60011 · doi:10.1016/j.jmva.2013.01.010 [213] Y. Shitov, A counterexample to Comon’s conjecture, SIAM Journal on Applied Algebra and Geometry, 2, 428-443 (2018) · Zbl 1401.15004 · doi:10.1137/17M1131970 [214] N. L. X. K. E. C. Sidiropoulos De Lathauwer Fu Huang Papalexakis Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65, 3551-3582 (2017) · Zbl 1415.94232 · doi:10.1109/TSP.2017.2690524 [215] R. Silhol, The Schottky problem for real genus 3 M-curves, Math. Z., 236, 841-881 (2001) · Zbl 0988.32014 · doi:10.1007/PL00004854 [216] M. A. St. J. ed Sitharam John Sidman itors, Handbook of Geometric Constraint Systems Principles (2019) · Zbl 1397.05005 [217] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, 2005. · Zbl 1091.65049 [218] M. L. Sorensen De Lathauwer, Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-\((L_r, n, L_r, n, 1)\) terms—Part I: Uniqueness, SIAM J. Matrix Anal. Appl., 36, 496-522 (2015) · Zbl 1320.15010 · doi:10.1137/140956853 [219] M. L. Sorensen De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition Part I: Model and identifiability, IEEE Trans. Signal Process., 65, 517-527 (2017) · Zbl 1414.94579 · doi:10.1109/TSP.2016.2614796 [220] M. L. Sorensen De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition Part II: Algorithm and multirate sampling, IEEE Trans. Signal Process., 65, 528-539 (2017) · Zbl 1414.94580 · doi:10.1109/TSP.2016.2614797 [221] D. L. L. Do Sorensen M. manov I., Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-\((L_r, n, L_r, n, 1)\) terms — Part II: Algorithms, SIAM J. Matrix Anal. Appl., 36, 1015-1045 (2015) · Zbl 1321.65068 · doi:10.1137/140956865 [222] G. Strang, Computational Science and Engineering (2007) · Zbl 1194.65001 [223] B. Sturmfels, Gröbner Bases and Convex Polytopes, Volume 8 of University Lecture Series, American Mathematical Soc., 1996. · Zbl 0856.13020 [224] B. Sturmfels, Solving Systems of Polynomial Equations, Number 97 in CBMS Regional Conferences Series. American Mathematical Society, 2002. [225] B. Sturmfels, What is … a Gröbner basis?, Notices Amer. Math. Soc., 52, 1199-1200 (2005) · Zbl 1093.13512 [226] B. S. Sturmfels Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol., 12, 204-228 (2005) · Zbl 1391.13058 [227] B. Sturmfels and S. Telen, Likelihood equations and scattering amplitudes, arXiv: 2012.05041, 2020. · Zbl 1515.62137 [228] B. C. Sturmfels Uhler, Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math., 62, 603-638 (2010) · Zbl 1440.62255 · doi:10.1007/s10463-010-0295-4 [229] B. C. P. Sturmfels Uhler Zwiernik, Brownian motion tree models are toric, Kybernetika, 56, 1154-1175 (2020) · Zbl 1538.62361 · doi:10.14736/kyb-2020-6-1154 [230] S. Sullivant, Gaussian conditional independence relations have no finite complete characterization, J. Pure Appl. Algebra, 213, 1502-1506 (2009) · Zbl 1162.13014 · doi:10.1016/j.jpaa.2008.11.026 [231] S. Sullivant, Algebraic Statistics, Volume 194 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2018. · Zbl 1408.62004 [232] C. B. Swierczewski Deconinck, Computing Riemann theta functions in Sage with applications, Math. Comput. Simulation, 127, 263-272 (2016) · Zbl 1520.33013 · doi:10.1016/j.matcom.2013.04.018 [233] R. Szeliski, Computer Vision - Algorithms and Applications, Texts in Computer Science, Springer, 2011. · Zbl 1219.68009 [234] N. Takayama, T. Koyama, T. Sei, H. Nakayama, and K. Nishiyama, \( \mathtt{hgm} \): Holonomic Gradient Method and Gradient Descent, \( \mathtt{R}\) package version 1.17, 2017. [235] The Sage Developers, SageMath, the Sage Mathematics Software System, https://www.sagemath.org. [236] A. Torres and E. Feliu, Detecting parameter regions for bistability in reaction networks, arXiv: 1909.13608, 2019. [237] R. Vakil, The rising sea: Foundations of algebraic geometry, Available at http://math.stanford.edu/vakil/216blog/index.html. [238] J. Verschelde, Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation, ACM Trans. Math. Softw., 25, 251C276 (1999) · Zbl 0961.65047 [239] R. Y. S. Vidal Ma Sastry, Generalized principal component analysis (GPCA), IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1945-1959 (2005) · Zbl 1349.62006 · doi:10.1007/978-0-387-87811-9 [240] C. E. Wiuf Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12, 1685-1721 (2013) · Zbl 1278.92012 · doi:10.1137/120873388 [241] R. J. Woodham, Photometric method for determining surface orientation from multiple images, In Shape From Shading, (1989), 513-531. [242] W. J. E. Xiong Ferrell Jr, A positive-feedback-based bistable ’memory module’ that governs a cell fate decision, Nature, 426, 460-465 (2003) [243] M. Yang, On partial and generic uniqueness of block term tensor decompositions, Annali dell’universita’ di Ferrara, 60, 465-493 (2014) · Zbl 1315.15026 · doi:10.1007/s11565-013-0190-z [244] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 32, 321-368 (1990) · Zbl 0738.33001 · doi:10.1016/0377-0427(90)90042-X [245] A. I. Zobnin, One-element differential standard bases with respect to inverse lexicographical orderings, J. Math. Sci. (N. Y.), 163, 523-533 (2009) · Zbl 1288.13021 · doi:10.1007/s10958-009-9690-x This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.