Budak, Hüseyin Weighted Ostrowski type inequalities for co-ordinated convex functions. (English) Zbl 1506.26013 J. Inequal. Appl. 2022, Paper No. 9, 15 p. (2022). MSC: 26D07 26D10 26D15 26B15 26B25 PDF BibTeX XML Cite \textit{H. Budak}, J. Inequal. Appl. 2022, Paper No. 9, 15 p. (2022; Zbl 1506.26013) Full Text: DOI OpenURL
Budak, Hüseyin; Sarikaya, Mehmet Zeki Hermite-Hadamard-Fejér inequalities for double integrals. (English) Zbl 1489.26026 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 100-116 (2021). MSC: 26D15 26B25 PDF BibTeX XML Cite \textit{H. Budak} and \textit{M. Z. Sarikaya}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 100--116 (2021; Zbl 1489.26026) Full Text: DOI OpenURL
Sarikaya, Mehmet Zeki; Budak, Hüseyin Weighted generalization of some inequalities for double integrals. (English) Zbl 1499.26183 Publ. Inst. Math., Nouv. Sér. 110(124), 71-79 (2021). MSC: 26D15 26B15 26B25 PDF BibTeX XML Cite \textit{M. Z. Sarikaya} and \textit{H. Budak}, Publ. Inst. Math., Nouv. Sér. 110(124), 71--79 (2021; Zbl 1499.26183) Full Text: DOI OpenURL
Butt, Saad Ihsan; Akdemir, Ahmet Ocak; Agarwal, Praveen; Baleanu, Dumitru Non-conformable integral inequalities of Chebyshev-Pólya-Szegö type. (English) Zbl 1489.26005 J. Math. Inequal. 15, No. 4, 1391-1400 (2021). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{S. I. Butt} et al., J. Math. Inequal. 15, No. 4, 1391--1400 (2021; Zbl 1489.26005) Full Text: DOI OpenURL
Al Qurashi, Maysaa; Rashid, Saima; Khalid, Aasma; Karaca, Yeliz; Chu, Yu-Ming New computations of Ostrowski-type inequality pertaining to fractal style with applications. (English) Zbl 1487.26029 Fractals 29, No. 5, Article ID 2140026, 26 p. (2021). MSC: 26D15 26A51 28A80 PDF BibTeX XML Cite \textit{M. Al Qurashi} et al., Fractals 29, No. 5, Article ID 2140026, 26 p. (2021; Zbl 1487.26029) Full Text: DOI OpenURL
Kumar, Susheel Generalized growth of special monogenic functions having finite convergence radius. (English) Zbl 1483.30091 Thai J. Math. 19, No. 1, 251-260 (2021). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, Thai J. Math. 19, No. 1, 251--260 (2021; Zbl 1483.30091) Full Text: Link OpenURL
Yildirim, Hüseyin; Yildirim, Seda Kilinç On generalized fractional integral inequalities of Ostrowski type. (English) Zbl 1485.26027 Acta Comment. Univ. Tartu. Math. 25, No. 1, 143-151 (2021). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26A33 26D15 41A55 PDF BibTeX XML Cite \textit{H. Yildirim} and \textit{S. K. Yildirim}, Acta Comment. Univ. Tartu. Math. 25, No. 1, 143--151 (2021; Zbl 1485.26027) Full Text: DOI OpenURL
Budak, Hüseyin; Ertuğral, Fatma; Sarikaya, Mehmet Zeki Weighted Hermite-Hadamard and Simpson type inequalities for double integrals. (English) Zbl 1483.26014 J. Math. Ext. 15, No. 1, 149-177 (2021). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D07 26D10 26D15 26B15 26B25 PDF BibTeX XML Cite \textit{H. Budak} et al., J. Math. Ext. 15, No. 1, 149--177 (2021; Zbl 1483.26014) Full Text: Link OpenURL
Erden, Samet; Sarikaya, Mehmet Zeki Some perturbed inequalities of Ostrowski type for high-order differentiable functions and applications. (English) Zbl 1473.26017 J. Appl. Anal. 27, No. 1, 57-64 (2021). MSC: 26D10 26A45 26D15 PDF BibTeX XML Cite \textit{S. Erden} and \textit{M. Z. Sarikaya}, J. Appl. Anal. 27, No. 1, 57--64 (2021; Zbl 1473.26017) Full Text: DOI OpenURL
Zayed, Mohra Lower growth of generalized Hadamard product functions in Clifford setting. (English) Zbl 1462.30104 Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805-826 (2021). MSC: 30G35 30D15 PDF BibTeX XML Cite \textit{M. Zayed}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 2, 805--826 (2021; Zbl 1462.30104) Full Text: DOI OpenURL
Dragomir, Silvestru Sever Further inequalities for the generalized \(k\)-\(g\)-fractional integrals of functions with bounded variation. (English) Zbl 1492.26026 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 69, No. 1, 49-72 (2020). MSC: 26D15 26A33 26A45 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 69, No. 1, 49--72 (2020; Zbl 1492.26026) Full Text: DOI OpenURL
Necib, A.; Merad, A. Laplace transform and homotopy perturbation methods for solving the pseudohyperbolic integrodifferential problems with purely integral conditions. (English) Zbl 1494.35121 Kragujevac J. Math. 44, No. 2, 251-272 (2020). MSC: 35L82 35A22 35R09 44A10 45J05 65R20 PDF BibTeX XML Cite \textit{A. Necib} and \textit{A. Merad}, Kragujevac J. Math. 44, No. 2, 251--272 (2020; Zbl 1494.35121) Full Text: Link OpenURL
Ali, Muhammad Aamir; Budak, Hüseyin; Zhang, Zhiyue New inequalities of Ostrowski type for co-ordinated convex functions via generalized fractional integrals. (English) Zbl 1488.26051 Facta Univ., Ser. Math. Inf. 35, No. 4, 899-917 (2020). MSC: 26D10 26A33 26B15 26B25 26D15 PDF BibTeX XML Cite \textit{M. A. Ali} et al., Facta Univ., Ser. Math. Inf. 35, No. 4, 899--917 (2020; Zbl 1488.26051) Full Text: DOI OpenURL
Mahmood, Tahir; Naeem, Muhammad; Hussain, Saqib; Khan, Shahid; Altinkaya, Şahsene A subclass of analytic functions defined by using Mittag-Leffler function. (English) Zbl 1467.30010 Honam Math. J. 42, No. 3, 577-590 (2020). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{T. Mahmood} et al., Honam Math. J. 42, No. 3, 577--590 (2020; Zbl 1467.30010) Full Text: DOI OpenURL
Dragomir, Silvestru Sever Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation. (English) Zbl 1452.26020 Acta Univ. Sapientiae, Math. 12, No. 1, 30-53 (2020). MSC: 26D15 26D10 26D07 26A33 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Acta Univ. Sapientiae, Math. 12, No. 1, 30--53 (2020; Zbl 1452.26020) Full Text: DOI OpenURL
Hong, Huang A new companion of Ostrowski’s inequality and its applications. (English) Zbl 1488.26064 Kragujevac J. Math. 43, No. 3, 443-449 (2019). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{H. Hong}, Kragujevac J. Math. 43, No. 3, 443--449 (2019; Zbl 1488.26064) Full Text: Link OpenURL
Budak, H.; Sarikaya, M. Z. On weighted generalization of trapezoid type inequalities for functions of two variables with bounded variation. (English) Zbl 1488.26089 Kragujevac J. Math. 43, No. 1, 109-122 (2019). MSC: 26D15 26B30 41A55 PDF BibTeX XML Cite \textit{H. Budak} and \textit{M. Z. Sarikaya}, Kragujevac J. Math. 43, No. 1, 109--122 (2019; Zbl 1488.26089) Full Text: Link OpenURL
Ponnuraj, Dinakar; Srinivasan, Selvarangam; Ethiraju, Thandapani Oscillation of second order neutral type Emden-Fowler delay difference equations. (English) Zbl 1460.39003 Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 164, 11 p. (2019). MSC: 39A21 39A10 39A12 PDF BibTeX XML Cite \textit{D. Ponnuraj} et al., Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 164, 11 p. (2019; Zbl 1460.39003) Full Text: DOI OpenURL
Meftah, Badreddine Fractional Ostrowski type inequalities for functions whose modulus of the first derivatives are prequasi-invex. (English) Zbl 1434.26038 J. Appl. Anal. 25, No. 2, 165-171 (2019). MSC: 26D10 26A33 26A51 26D15 PDF BibTeX XML Cite \textit{B. Meftah}, J. Appl. Anal. 25, No. 2, 165--171 (2019; Zbl 1434.26038) Full Text: DOI OpenURL
Dragomir, Silvestru Sever Some inequalities for the generalized \(k\)-\(g\)-fractional integrals of convex functions. (English) Zbl 1438.26054 Fract. Differ. Calc. 9, No. 1, 163-186 (2019). MSC: 26D15 26A33 26A51 26D07 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Fract. Differ. Calc. 9, No. 1, 163--186 (2019; Zbl 1438.26054) Full Text: DOI OpenURL
Meftah, Badreddine Fractional Ostrowski type inequalities for functions whose certain power of modulus of the first derivatives are pre-quasi-invex via power mean inequality. (English) Zbl 1414.26034 J. Appl. Anal. 25, No. 1, 83-90 (2019). MSC: 26D10 26D15 26A51 PDF BibTeX XML Cite \textit{B. Meftah}, J. Appl. Anal. 25, No. 1, 83--90 (2019; Zbl 1414.26034) Full Text: DOI OpenURL
Kacar, E.; Kacar, Z.; Yildirim, H. Integral inequalities for \(h(x)\)-Riemann-Liouville fractional integrals. (English) Zbl 1458.26011 Iran. J. Math. Sci. Inform. 13, No. 1, 1-13 (2018). MSC: 26A33 26D15 41A55 PDF BibTeX XML Cite \textit{E. Kacar} et al., Iran. J. Math. Sci. Inform. 13, No. 1, 1--13 (2018; Zbl 1458.26011) Full Text: Link OpenURL
Dragomir, Silvestru Sever Inequalities of Jensen’s type for generalized \(k\)-\(g\)-fractional integrals of function \(f\) for which the composite \(f \circ g^{-1}\) is convex. (English) Zbl 1424.26049 Fract. Differ. Calc. 8, No. 1, 127-150 (2018). MSC: 26D15 26A33 26D07 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Fract. Differ. Calc. 8, No. 1, 127--150 (2018; Zbl 1424.26049) Full Text: DOI OpenURL
Banu, S. Mehar; Nalini, S. Oscillation of second order difference equation with several super-linear neutral terms. (English) Zbl 1448.39011 Adv. Difference Equ. 2018, Paper No. 345, 10 p. (2018). MSC: 39A21 39A12 PDF BibTeX XML Cite \textit{S. M. Banu} and \textit{S. Nalini}, Adv. Difference Equ. 2018, Paper No. 345, 10 p. (2018; Zbl 1448.39011) Full Text: DOI OpenURL
Du, Tingsong; Li, Yujiao; Yang, Zhiqiao A generalization of Simpson’s inequality via differentiable mapping using extended \((s,m)\)-convex functions. (English) Zbl 1411.26020 Appl. Math. Comput. 293, 358-369 (2017). MSC: 26D15 26A51 39B62 PDF BibTeX XML Cite \textit{T. Du} et al., Appl. Math. Comput. 293, 358--369 (2017; Zbl 1411.26020) Full Text: DOI OpenURL
Budak, Hüseyin; Sarikaya, Mehmet Zeki Some companions of Ostrowski type inequalities for twice differentiable functions. (English) Zbl 1387.26036 Note Mat. 37, No. 2, 103-116 (2017). MSC: 26D15 26A45 41A55 PDF BibTeX XML Cite \textit{H. Budak} and \textit{M. Z. Sarikaya}, Note Mat. 37, No. 2, 103--116 (2017; Zbl 1387.26036) Full Text: DOI OpenURL
Dragomir, Silvestru Sever A survey of perturbed Ostrowski type inequalities. (English) Zbl 1370.26039 Rassias, Themistocles M. (ed.) et al., Mathematical analysis, approximation theory and their applications. Cham: Springer (ISBN 978-3-319-31279-8/hbk; 978-3-319-31281-1/ebook). Springer Optimization and Its Applications 111, 145-217 (2016). MSC: 26D15 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Springer Optim. Appl. 111, 145--217 (2016; Zbl 1370.26039) Full Text: DOI OpenURL
Liu, Wenjun; Gao, Xingyue; Wen, Yaqiong Approximating the finite Hilbert transform via some companions of Ostrowski’s inequalities. (English) Zbl 1355.26030 Bull. Malays. Math. Sci. Soc. (2) 39, No. 4, 1499-1513 (2016). MSC: 26D15 26A46 41A80 PDF BibTeX XML Cite \textit{W. Liu} et al., Bull. Malays. Math. Sci. Soc. (2) 39, No. 4, 1499--1513 (2016; Zbl 1355.26030) Full Text: DOI OpenURL
Alomari, Mohammad W. A sharp companion of Ostrowski’s inequality for the Riemann-Stieltjes integral and applications. (English) Zbl 1354.26028 Ann. Univ. Paedagog. Crac., Stud. Math. 182(15), 69-78 (2016). MSC: 26D15 26D20 PDF BibTeX XML Cite \textit{M. W. Alomari}, Ann. Univ. Paedagog. Crac., Stud. Math. 182(15), 69--78 (2016; Zbl 1354.26028) OpenURL
Kumar, Susheel Generalized slow growth of special monogenic functions. (English) Zbl 1339.30021 J. Appl. Anal. 22, No. 1, 67-79 (2016). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, J. Appl. Anal. 22, No. 1, 67--79 (2016; Zbl 1339.30021) Full Text: DOI OpenURL
Dragomir, S. S. Inequalities for the Riemann-Stieltjes integral of \(S\)-dominated integrators with applications. I. (English) Zbl 1339.26047 Probl. Anal. Issues Anal. 4(22), No. 1, 11-37 (2015). MSC: 26D15 47A63 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Probl. Anal. Issues Anal. 4(22), No. 1, 11--37 (2015; Zbl 1339.26047) Full Text: DOI OpenURL
Dragomir, S. S. Some perturbed Ostrowski type inequalities for functions of bounded variation. (English) Zbl 1336.26031 Asian-Eur. J. Math. 8, No. 4, Article ID 1550069, 14 p. (2015). MSC: 26D15 26A45 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Asian-Eur. J. Math. 8, No. 4, Article ID 1550069, 14 p. (2015; Zbl 1336.26031) Full Text: DOI OpenURL
Özdemir, M. Emin; Avci Ardic, Merve Some companions of Ostrowski type inequality for functions whose second derivatives are convex and concave with applications. (English) Zbl 1308.26024 Arab J. Math. Sci. 21, No. 1, 53-66 (2015). MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{M. E. Özdemir} and \textit{M. Avci Ardic}, Arab J. Math. Sci. 21, No. 1, 53--66 (2015; Zbl 1308.26024) Full Text: DOI arXiv OpenURL
Liu, Wenjun; Gao, Xingyue Approximating the finite Hilbert transform via a companion of Ostrowski’s inequality for function of bounded variation and applications. (English) Zbl 1338.65280 Appl. Math. Comput. 247, 373-385 (2014). MSC: 65R10 44A15 PDF BibTeX XML Cite \textit{W. Liu} and \textit{X. Gao}, Appl. Math. Comput. 247, 373--385 (2014; Zbl 1338.65280) Full Text: DOI OpenURL
Serenbay, Sevilay Kırcı; Dalmanoğlu, Özge; Ibikli, Ertan On convergence of singular integral operators with radial kernels. (English) Zbl 1325.45017 Fasshauer, Gregory E. (ed.) et al., Approximation theory XIV: San Antonio 2013. Selected papers based on the presentations at the international conference, San Antonio, TX, USA, April 7–10, 2013. Cham: Springer (ISBN 978-3-319-06403-1/hbk; 978-3-319-06404-8/ebook). Springer Proceedings in Mathematics & Statistics 83, 295-308 (2014). MSC: 45P05 PDF BibTeX XML Cite \textit{S. K. Serenbay} et al., Springer Proc. Math. Stat. 83, 295--308 (2014; Zbl 1325.45017) Full Text: DOI OpenURL
Kumar, Susheel Generalized growth of special monogenic functions. (English) Zbl 1310.30041 J. Complex Anal. 2014, Article ID 510232, 5 p. (2014). MSC: 30G35 PDF BibTeX XML Cite \textit{S. Kumar}, J. Complex Anal. 2014, Article ID 510232, 5 p. (2014; Zbl 1310.30041) Full Text: DOI OpenURL
Zhang, Bo; Xi, Bo-Yan; Qi, Feng Some properties and inequalities for \(h\)-geometrically convex functions. (English) Zbl 1412.26024 J. Class. Anal. 3, No. 2, 101-108 (2013). MSC: 26A51 26D15 41A55 PDF BibTeX XML Cite \textit{B. Zhang} et al., J. Class. Anal. 3, No. 2, 101--108 (2013; Zbl 1412.26024) Full Text: DOI OpenURL
Alomari, M. W. A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration. (English. Russian original) Zbl 1257.26016 Ukr. Math. J. 64, No. 4, 491-510 (2012); translation from Ukr. Mat. Zh. 64, No. 4, 435-450 (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{M. W. Alomari}, Ukr. Math. J. 64, No. 4, 491--510 (2012; Zbl 1257.26016); translation from Ukr. Mat. Zh. 64, No. 4, 435--450 (2012) Full Text: DOI Link OpenURL