×

New computations of Ostrowski-type inequality pertaining to fractal style with applications. (English) Zbl 1487.26029

Summary: The purpose of this paper is to provide novel estimates of Ostrowski-type inequalities in a much simpler and shorter way of some recent significant results in the context of a fractal set \(\mathbb{R}^{\tilde{\alpha}}\). By using our new approach, we established an auxiliary result that correlates with generalized convex (\(\mathcal{GC}\)) and concave functions for absolutely continuous functions with second-order local differentiable mappings. Moreover, we derived some companions of Ostrowski-type inequalities belonging to \(\mathcal{V}^{(2\tilde{\alpha})}\in L_\infty[s_1, s_2]\), \(\mathcal{V}^{(2\tilde{\alpha})}\in L_p[s_1, s_2]\) and \(\mathcal{V}^{(2\tilde{\alpha})}\in L_1[s_1, s_2]\) in local fractional sense. Our results generalize and offer better bounds than many known results in the existing literature associated with trapezoidal and midpoint formula. As an application perspective, we derived several estimation-type outcomes by the use of generalized \(\tilde{\alpha}\)-type special means formula provided here to illustrate the usability of the obtained results. Our study contributes to a better understanding of fractal analysis and proves beneficial in exploring real-world phenomena.

MSC:

26D15 Inequalities for sums, series and integrals
26A51 Convexity of real functions in one variable, generalizations
28A80 Fractals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ostrowski, A., Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv.10(1) (1937) 226-227. · JFM 64.0209.01
[2] Guessab, A. and Schmeisser, G., Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory.115(2) (2002) 260-288. · Zbl 1012.26013
[3] Dragomir, S. S., Some companions of Ostrowski’s inequality for absolutely continuous functions and applications, Bull. Korean Math. Soc.42(2) (2005) 213-230. · Zbl 1099.26015
[4] Alomari, M. W., A companion of Ostrowski’s inequality with applications, Transylv. J. Math. Mech.3(1) (2011) 9-14. · Zbl 1233.26006
[5] Barnett, N. S., Dragomir, S. S. and Gomm, I., A companion for the Ostrowski and the generalised trapezoid inequalities, Math. Comput. Model.50(1-2) (2009) 179-187. · Zbl 1185.26038
[6] Dragomir, S. S., A companions of Ostrowski’s inequality for functions of bounded variation and applications, RGMIA Res. Rep. Coll. (2002) Article ID: 28.
[7] Dragomir, S. S., Ostrowski type inequalities for functions defined on linear spaces and applications for semi-inner products, J. Concr. Appl. Math.3(1) (2005) 91-103. · Zbl 1096.26009
[8] Dragomir, S. S., Ostrowski’s type inequalities for continuous functions of self-adjoint operators on Hilbert spaces: A survey of recent results, Ann. Funct. Anal.2(1) (2011) 139-205. · Zbl 1231.47012
[9] Alomari, M. W., A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and applications in numerical integration, Transylv. J. Math. Mech.4(2) (2012) 103-109. · Zbl 1289.26037
[10] Alomari, M. W., A generalization of companion inequality of Ostrowski’s type for mappings whose first derivatives are bounded and applications in numerical integration, Kragujev. J. Math.36(1) (2012) 77-82. · Zbl 1289.26037
[11] Liu, Z., Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math.10(2) (2009) Article ID: 52. · Zbl 1168.26310
[12] Huy, V. N. and Ngô, Q.-A., New bounds for the Ostrowski-like type inequalities, Bull. Korean Math. Soc.48(1) (2011) 95-104. · Zbl 1222.26022
[13] Liu, W. J., Several error inequalities for a quadrature formula with a parameter and applications, Comput. Math. Appl.14(7) (2008) 1766-1772. · Zbl 1152.65421
[14] Liu, W. J., Some weighted integral inequalities with a parameter and applications, Acta Appl. Math.109(2) (2010) 389-400. · Zbl 1196.26030
[15] Liu, W. J., Xue, Q. L. and Wang, S. F., New generalization of perturbed Ostrowski type inequalities and applications, J. Appl. Math. Comput.32(1) (2010) 157-169. · Zbl 1185.26030
[16] Özdemir, M. E. and Ardic, M. A., Some companions of Ostrowski type inequality for functions whose second derivatives are convex and concave with applications, Arab. J. Math. Sci.21(1) (2015) 53-66. · Zbl 1308.26024
[17] Cerone, P. and Dragomir, S. S., Trapezoidal type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics (CRC Press, New York, 2000), pp. 65-134. · Zbl 0966.26014
[18] Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993). · Zbl 0789.26002
[19] Podlubny, I., Fractional Differential Equations (Academic Press, New York, 1999). · Zbl 0924.34008
[20] Khan, R. A., Generalized approximation method for heat radiation equations, Appl. Math. Comput,212(2) (2009) 287-295. · Zbl 1166.65359
[21] Baleanu, D., Ghanbari, B., Asad, J. H., Jajarmi, A. and Pirouz, H. M., Planar system-masses in an equilateral triangle: Numerical study within fractional calculus, Comput. Model. Eng. Sci.124(3) (2020) 953-968.
[22] Jajarmi, A. and Baleanu, D., A new iterative method for the numerical solution of high-order nonlinear fractional boundary value problems, Front. Phys.8 (2020) 220.
[23] Sajjadi, S. S., Baleanu, D., Jajarmi, A. and Pirouz, H. M., A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Solitons Fractals138 (2020) 109919. · Zbl 1490.92005
[24] Jajarmi, A. and Baleanu, D., On the fractional optimal control problems with a general derivative operator, Asian J. Control (2019), https://doi.org/10.1002/asjc.2282. · Zbl 07878870
[25] Dai, Z.-F., Two modified HS type conjugate gradient methods for unconstrained optimization problems, Nonlinear Anal.74(3) (2011) 927-936. · Zbl 1203.49049
[26] Dai, Z.-F., Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput.276 (2016) 297-300. · Zbl 1410.65234
[27] Mandelbrot, B. B., The Fractal Geometry of Nature, Vol. 5 (WH Freeman, New York, 1982). · Zbl 0504.28001
[28] Kwun, Y. C., Shahid, A. A., Nazeer, W., Abbas, M. and Kang, S. M., Fractal generation via CR iteration scheme with \(s\)-convexity, IEEE Access7 (2019) 69986-69997.
[29] Kumari, S., Kumari, M. and Chugh, R., Generation of new fractals via SP orbit with \(s\)-convexity, Int. J. Eng. Technol.9(3) (2017) 2491-2504.
[30] Yang, J., Baleanu, D. and Yang, X. J., Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys.2013 (2013) 632309. · Zbl 1291.35123
[31] Yang, X. J., Advanced Local Fractional Calculus and its Applications (World Science Publisher, New York, 2012).
[32] Mo, H. X. and Sui, X., Hermite-Hadamard-type inequalities for generalized \(s\)-convex functions on real linear fractal set \(\mathbb{R}^{\widetilde{\alpha}}(0\leq \widetilde{\alpha}<1)\), Math. Sci.11 (2017) 241-246. · Zbl 1407.26025
[33] Mo, H. X., Sui, X. and Yu, D. Y., Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal.2014 (2014) 636-751. · Zbl 1474.26128
[34] H. Mo, Generalized Herrmite-Hadamard type inequalities involving local fractional integrals, preprint (2014), arXiv:1410.1062 [math.CA].
[35] Chen, G., Srivastava, H. M., Wang, P. and Wei, W., Some further generalizations of Hölder’s inequality and related results on fractal space, Abstr. Appl. Anal.2014 (2014) 7 pp. · Zbl 1474.26099
[36] Kilicman, A. and Saleh, W., Notions of generalized \(s\)-convex functions on fractal sets, J. Inequal. Appl.2015 (2015), Article ID: 312, 16 pp. · Zbl 1336.26010
[37] Kilicman, A. and Saleh, W., Some generalized Hermite-Hadamard type integral inequalities for generalized \(s\)-convex functions on fractal sets, Adv. Difference Equ.2015 (2015), Article ID: 301, 15 pp. · Zbl 1422.26010
[38] Du, T., Wang, H., Khan, M. Adil and Zhang, Y., Certain integral inequalities considering generalized \(m\)-convexity of fractals sets and their applications, Fractals27(7) (2019). · Zbl 1434.28018
[39] Luo, C., Wang, H. and Dua, T., Fejér-Hermite-Hadamard type inequalities involving generalized \(h\)-convexity on fractal sets and their applications, Chaos Solitons Fractals131 (2020) 109547. · Zbl 1495.26031
[40] Anastassiou, G., Kashuri, A. and Liko, R., Local fractional integrals involving generalized strongly m-convex mappings, Arab. J. Math.8 (2019) 95-107. · Zbl 1414.26014
[41] Vivas, M., Hernandez, J. and Merentes, N., New Hermite-Hadamard and Jensen type inequalities for \(h\)-convex functions on fractal sets, Rev. Colomb. Mat.50(2) (2016) 145-164. · Zbl 1365.28012
[42] Sarikaya, M. Z. and Budak, H., Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc.145(4) (2017) 1527-1538. · Zbl 1357.26026
[43] Sun, W., On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals, Quaest. Math.42(9) (2019) 1159-1183. · Zbl 1428.26056
[44] Budak, H., Sarikaya, M. Z. and Yildirim, H., New inequalities for local fractional integrals, Iran. J. Sci. Technol. Trans. Sci.41(4) (2017) 1039-1046. · Zbl 1391.26049
[45] Noor, M. A., Noor, K. I. and Rashid, S., Some new classes of preinvex functions and inequalities, Mathematics7(29) (2019), https://doi.org/10.3390/math7010029.
[46] Pearce, C. E. M. and Pecaric, J., Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett.13(2) (2000) 51-55. · Zbl 0970.26016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.