×

Integral inequalities for \(h(x)\)-Riemann-Liouville fractional integrals. (English) Zbl 1458.26011

Summary: In this article, we obtain generalizations for Grüss-type integral inequality by using \(h(x)\)-Riemann-Liouville fractional integral.

MSC:

26A33 Fractional derivatives and integrals
26D15 Inequalities for sums, series and integrals
41A55 Approximate quadratures

References:

[1] G. Gr¨uss, Uber das maximum des absoluten Betrages von bbb
[2] Z. Dahmani, L. Tabharit, S. Taf, New Generalisations of Gr¨uss inequality using RiemannLiouville fractional integrals,Bulletin of Mathematical Anslysis and Applications,2(3), (2010), 93-99. · Zbl 1312.26038
[3] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities,International Journal of Mathematics and Mathematical Sciences, 2014, Article ID 869434, (2014). · Zbl 1286.26020
[4] H. Yue, Ostrowski Inequality for Fractional Integrals and Related Fractional Inequalities, TJMM5,5(1), (2013), 85-89. · Zbl 1292.26067
[5] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities,Journal of Inequalities in Pure and Applied Mathematics,10(3), (2009), article 86. · Zbl 1184.26011
[6] Z. Dahmani, New inequalities in fractional integrals,International Journal of Nonlinear Science,9(4), (2010), 493-497. · Zbl 1394.26002
[7] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities,Nonlinear Science Letters A,1(2), (2010), 155-160. · Zbl 1217.26012
[8] P. -L Butzer, A. -A. Kilbas, J. -J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property,Journal of Mathematical Analysis and Applications,269(2), (2002), 387-400. · Zbl 1027.26004
[9] M. -Z Sarıkaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration,Abstract and Applied Analysis,2012, Article ID 428983, (2012), 10 pages. · Zbl 1253.26012
[10] H. Yıldırım, Z. Kırtay, “Ostrowski Inequality for Generalized Fractional Integral and Related Inequalities,” Malaya Journal of Matematik,2(3) (2014), 322-329. · Zbl 1371.26041
[11] U. -N. Katugampola, Approach to a generalized fractional integral,Applied Mathematics and Computation,218(3), (2011), 860-865. · Zbl 1231.26008
[12] S. -G Samko, A. -A Kilbas, O. -I Marichev, Fractional Integral and Derivatives,Theory and Applications, Gordon and Breach, Yverdon et alibi., (1993). · Zbl 0818.26003
[13] E. Kacar, H. Yıldırım, Gr¨uss Type Integral Inequalities for Generalized RiemannLiouville Fractional Integrals,IJPAM.,101(1), (2015), 55-70.
[14] S. Kılınc, H. Yıldırım, Generalized Fractional Integral Inequalities Involving Hypergeometric Operators,IJPAM.,101( 1), (2015), 71-82.
[15] H.H.G. Hashem, On The Solution of a Generalized Fractional Order Integral Equation and Some Applications,Journal of Calculus and Applications,6(1) Jan. (2015), 120-130. · Zbl 1499.45005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.