Ponnuraj, Dinakar; Srinivasan, Selvarangam; Ethiraju, Thandapani Oscillation of second order neutral type Emden-Fowler delay difference equations. (English) Zbl 1460.39003 Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 164, 11 p. (2019). Summary: In this paper, the authors using summation averaging method and an inequality present some new oscillation criteria for the second order neutral type Emden-Fowler delay difference equation \[ \begin{aligned} \varDelta (f_i |\varDelta \chi_i|^{\alpha -1} \varDelta \chi_i) + g_i |\psi_{i-l}|^{\beta -1} \psi_{i-l} = 0, \quad i \ge i_0 >0, \end{aligned} \] where \(\chi_i = \psi_i + h_i \psi_{i-k}\), \(\alpha > 0\) and \(\beta > 0\). The obtained results improve and extend some known results recorded in the literature. Examples illustrating the significance of our results are provided. Cited in 2 Documents MSC: 39A21 Oscillation theory for difference equations 39A10 Additive difference equations 39A12 Discrete version of topics in analysis Keywords:Emden-Fowler difference equation; oscillation; second-order difference equation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agarwal, Rp; Manuel, Mms; Thandapani, E., Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Model., 24, 5-11 (1996) · Zbl 0856.34077 · doi:10.1016/0895-7177(96)00076-3 [2] Agarwal, Rp, Difference Equations and Inequalities (2000), New York: Marcel Dekker, New York · Zbl 0952.39001 [3] Agarwal, Rp; Bohner, M.; Grace, Sr; O’Regan, D., Discrete Oscillation Theory (2005), New York: Hindawi Publ. Corp, New York · Zbl 1084.39001 [4] Berkovich, Lm, The generalized Emden-Fowler equation, Symmetry Nonlinear Math. Phys., 1, 155-163 (1997) · Zbl 0952.34030 [5] Cecchi, M.; Dosla, Z.; Marini, M., On oscillation and nonoscillation properties of Emden-Fowler difference equations, Cent. Eur. J. Math., 7, 322-334 (2009) · Zbl 1180.39012 [6] Grace, Sr; El-Morshedy, Ha, Oscillation criteria of comparison type for second order difference equations, J. Appl. Anal., 6, 87-103 (2000) · Zbl 0963.39008 · doi:10.1515/JAA.2000.87 [7] He, Jh, The simplest approach to nonlinear oscillations, Results Phys., 15, 102546 (2019) · doi:10.1016/j.rinp.2019.102546 [8] He, Jh; Ji, Fy, Tayor series solution for Lane-Emden equation, J. Math. Chem., 57, 1932-1934 (2019) · Zbl 1429.34027 · doi:10.1007/s10910-019-01048-7 [9] Jiang, J., Oscillation of second order nonlinear neutral delay difference equations, Appl. Math. Comput., 146, 791-801 (2003) · Zbl 1035.34074 [10] Jinfa, C., Kamenev-type oscillation criteria for delay difference equations, Acta Math. Sci., 27B, 574-584 (2007) · Zbl 1150.39003 [11] Marin, M.; Baleanu, D.; Vlase, S., Effect of microtemperatures for micropolar thermoelastic bodies, Struct. Eng. Mech., 61, 381-387 (2017) · doi:10.12989/sem.2017.61.3.381 [12] Marin, M.; Cracium, Em, Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials, Compos. Part B Eng., 126, 27-37 (2017) · doi:10.1016/j.compositesb.2017.05.063 [13] Migda, M.; Migda, J., Nonoscillatory solutions to second order neutral difference equations, Symmetry, 10, 207 (2018) · Zbl 1423.34094 · doi:10.3390/sym10060207 [14] Othman, Mia; Marin, M., Effect of thermal loading due to laser pulse on the thermoelastic porus medium under G-N theory, Results Phys., 7, 3863-3872 (2017) · doi:10.1016/j.rinp.2017.10.012 [15] Saker, Sh, New oscillation criteria for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 142, 99-111 (2003) · Zbl 1028.39003 [16] Selvarangam, S.; Thandapani, E.; Pinelas, S., Oscillation theorems for second order nonlinear neutral difference equations, J. Inequal. Appl., 47, 1-15 (2014) · Zbl 1332.39005 [17] Sun, Yg; Saker, Sh, Oscillation for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 163, 909-918 (2005) · Zbl 1078.39014 [18] Thandapani, E.; Mahalingam, K., Oscillation and nonoscillation of second order neutral delay difference equations, Czechoslovak Math. J., 53, 935-947 (2003) · Zbl 1080.39503 · doi:10.1023/B:CMAJ.0000024532.03496.b2 [19] Thandapani, E.; Selvarangam, S., Oscillation of second order Emden-Fowler type neutral difference equations, Dyn. Contin. Discrete Impul. Syst. Ser. A Math. Anal., 19, 453-469 (2012) · Zbl 1267.39007 [20] Thandapani, E.; Selvarangam, S., Oscillation theorems for second order quasilinear neutral difference equations, J. Math. Comput. Sci., 2, 866-879 (2012) · Zbl 1267.39007 [21] Thandapani, E.; Balasubramanian, V., Some oscillation results for second order neutral type difference equations, Differ. Equ. Appl., 3, 319-330 (2013) · Zbl 1284.39012 [22] Thandapani, E.; Balasubramanian, V., Some oscillation theorems for second order nonlinear neutral type difference equations, Malaya J. Mat., 3, 34-43 (2013) · Zbl 1369.39009 [23] Thandapani, E.; Seghar, D.; Selvarangam, S., Oscillation of second order quasilinear difference equations with several neutral terms, Transylv. J. Math. Mech., 7, 67-74 (2015) · Zbl 1345.39003 [24] Thandapani, E.; Selvarangam, S., Oscillation of solutions of second order neutral type difference equations, Nonlinear Funct. Anal. Appl., 20, 329-336 (2015) · Zbl 1341.39003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.