Social behavior-induced multistability in minimal competitive ecosystems. (English) Zbl 1397.92760

Summary: Mimimal models of coordinated behavior of populations living in the same environment are introduced for the cases when they either both gain by mutual interactions, or one hunts the other one, or finally when they compete with each other. The equilibria of the systems are analysed, showing that in some cases the populations may both disappear. Coexistence leads to global asymptotic stability for symbiotic populations, or to Hopf bifurcations for predator-prey systems. Finally, a new very interesting phenomenon is discovered in the competition case: tristability may be achieved showing that the principle of competitive exclusion fails in this case. Indeed either one of the competing populations may thrive, but also the case of populations coexistence is allowed, for the same set of parameter values.


92D50 Animal behavior
92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI Link


[1] Ajraldi, V.; Pittavino, M.; Venturino, E., Modeling herd behavior in population systems, Nonlinear Anal. Real World Applications, 12, 2319-2338 (2011) · Zbl 1225.49037
[2] Banerjee, M.; Kooi, B. W.; Venturino, E., An ecoepidemic model with prey herd behavior and predator feeding saturation response on both healthy and diseased prey, Math. Models Nat. Pheno., 12, 2, 133-161 (2017) · Zbl 1384.37112
[3] Bera, S. P.; Maiti, A.; Samanta, G. P., Dynamics of a food chain model with herd behaviour of the prey, Model Earth Syst. Environ., 2, 131 (2016)
[4] Bera, S. P.; Maiti, A.; Samanta, G. P., Stochastic analysis of a prey-predator model with herd behaviour of prey, Nonlinear Anal. Modeling and Control, 21, 3, 345-361 (2016) · Zbl 1416.92144
[5] Braza, P. A., Predator prey dynamics with square root functional responses, Nonlinear Anal. Real World Applications, 13, 1837-1843 (2012) · Zbl 1254.92072
[6] Bulai, I. M.; Venturino, E., Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simul., 141, 40-55 (2017) · Zbl 07313862
[7] Caccherano, E.; Chatterjee, S.; Costa Giani, L.; Il Grande, L.; Romano, T.; Visconti, G.; Venturino, E., Models of symbiotic associations in food chains, (Camisão, A. F.; Pedroso, C. C., Symbiosis: Evolution, Biology and Ecological Effects (2012), Nova Science Publishers: Nova Science Publishers Hauppauge, NY), 189-234
[8] Cagliero, E.; Venturino, E., Ecoepidemics with infected prey in herd defense: the harmless and toxic cases, IJCM, 93, 1, 108-127 (2016) · Zbl 1357.92068
[9] Cavoretto, R.; Chaudhuri, S.; De Rossi, A.; Menduni, E.; Moretti, F.; Rodi, M. C.; Venturino, E., Approximation of dynamical system’s separatrix curves, Numerical Analysis and Applied Mathematics ICNAAM 2011, (Simos, T.; Psihoyios, G.; Tsitouras, Ch.; Anastassi, Z., AIP Conf. Proc. 1389 (2011)), 1220-1223
[10] Cavoretto, R.; De Rossi, A.; Perracchione, E.; Venturino, E., Robust approximation algorithms for the detection of attraction basins in dynamical systems, J. Sci. Comput, 68, 395-415 (2016) · Zbl 1344.65118
[11] Cavoretto, R.; De Rossi, A.; Perracchione, E.; Venturino, E., Reconstruction of separatrix curves and surfaces in squirrels competition models with niche, (Hamilton, I. P.; Vigo-Aguiar, J.; Hadeli, H.; Alonso, P.; De Bustos, M. T.; Demiralp, M.; Ferreira, J. A.; Khaliq, A. Q.; López-Ramos, J.; Oliveira, P.; Reboredo, J. C.; van Daele, M.; Venturino, E.; Whiteman, J.; Wade, B., Proceedings of the 2013 International Conference on Computational and Mathematical Methods in Science and Engineering, vol. 3 (2013), Almeria: Almeria Spain), 400-411
[12] Cavoretto, R.; De Rossi, A.; Perracchione, E.; Venturino, E., Reliable approximation of separatrix manifolds in competition models with safety niches, Int. J. Comput. Math., 92, 9, 1826-1837 (2015) · Zbl 1371.92107
[13] Cosner, C.; De Angelis, D. L.; Ault, J. S.; Olson, D. B., Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56, 65-75 (1999) · Zbl 0928.92031
[14] Francomano, E.; Hilker, F.; Paliaga, M.; Venturino, E., An efficient method to reconstruct invariant manifolds of saddle points, Dolomites Research Notes on Approximation Special issue dedicated to Annie Cuyt on the occasion of her 60th birthday, 10, 25-30 (2017) · Zbl 1370.34078
[15] Francomano, E.; Hilker, F. M.; Paliaga, M.; Venturino, E., On basins of attraction for a predator-prey model via meshless approximation, AIP NUMTA, 1776 (2016)
[16] Freedman, H. I.; Wolkowicz, G., Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48, 493-508 (1986) · Zbl 0612.92017
[17] Geritz, S. A.H.; Gyllenberg, M., Group defence and the predator’s functional response, J. Math. Biol., 66, 705-717 (2013) · Zbl 1258.92035
[18] Giardina, I., Collective behavior in animal groups: theoretical models and empirical studies, HFSP J., 2, 4, 205-219 (2008)
[19] Gimmelli, G.; Kooi, B. W.; Venturino, E., Ecoepidemic models with prey group defense and feeding saturation, Ecol. Complexity, 22, 50-58 (2015)
[20] Haque, M.; Venturino, E., Mathematical models of diseases spreading in symbiotic communities, (Harris, J. D.; Brown, P. L., Wildlife: Destruction, Conservation and Biodiversity (2009), NOVA Science Publishers: NOVA Science Publishers New York), 135-179
[21] Harrison, M. J., Signaling in the arbuscular mycorrhizal symbiosis, Annu. Rev. Microbiol., 59, 16153162, 19-42 (2005)
[22] Hassell, M. P.; Varley, G. C., New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 1133-1137 (1969)
[23] Kooi, B. W.; Venturino, E., Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274, 58-72 (2016) · Zbl 1336.37029
[24] Maiti, A.; Sen, P.; Manna, D.; Samanta, G. P., A predator-prey system with herd behaviour and strong allee effect, Nonlinear Dyn. Syst. Theory, 16, 1, 86-101 (2016) · Zbl 1343.34120
[25] Malchow, H.; Petrovskii, S.; Venturino, E., Spatiotemporal patterns in ecology and epidemiology, CRC (2008) · Zbl 1298.92004
[26] Mavrot, F.; Zimmermann, F.; Vilei, E. M.; Ryser-Degiorgis, M. P., Is the development of infectious keratoconjunctivitis in Alpine ibex and Alpine chamois influenced by topographic features?, Eur. J. Wildl. Res., 58, 5, 869-874 (2012)
[27] Nardon, P.; Charles, H., Morphological Aspects of Symbiosis Symbiosis: Mechanisms and Systems, 4, 15-44 (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordercht/boson/London
[28] Paracer, S.; Ahmadjian, V., Symbiosis: An Introduction to Biological Associations (2000), Oxford University Press: Oxford University Press Oxford [Oxfordshire]
[29] Palmer, T. M.; Brody, A. K., Mutualims as reciprocal exploitation: African plant-ants defend foliar but not reproductive structures, Ecology, 88, 12, 3004-3011 (2007)
[30] Perko, L., Differential Equations and Dynamical Systems (2000), Springer: Springer New York
[31] Sapp, J., Evolution by Association: A History of Symbiosis (1994), Oxford University Press: Oxford University Press Oxford [Oxfordshire]
[32] Schüssler, A.; Schwarzott, D.; Walker, C., A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 105, 12, 1413-1421 (2001)
[33] Sumpter, D. J., The principles of collective animal behaviour, Phil. Trans. R. Soc. B 29, 361, 1465, 5-22 (2006)
[34] Trench, R. K.; Boyle, J. E.; Smith, D. C., The association between chloroplasts of Codium fragile and the mollusc Elysia viridis. I. Characteristics of isolated Codium chloroplasts, Proc. R. Soc. Lond. Ser. B, 184, 1074, 51-61 (1973)
[35] Venturino, E.; Petrovskii, S., Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complexity, 14, 37-47 (2013)
[36] Waltman, P., Competition models in population biology, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics (1983), Philadelphia · Zbl 0572.92019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.