Sommariva, A.; Vianello, M. Near-optimal polynomial interpolation on spherical triangles. (English) Zbl 1504.65025 Mediterr. J. Math. 19, No. 2, Paper No. 68, 17 p. (2022). Summary: We compute Chebyshev-like norming grids for polynomials on spherical triangles. The construction is based on a conjecture about norming grids for univariate trigonometric polynomials (supported by wide numerical testing), together with the fundamental notion of Dubiner distance for multivariate compact sets. Such grids can be used to extract Fekete-like interpolation points with slowly increasing Lebesgue constant, by basic numerical linear algebra. MSC: 65D05 Numerical interpolation 41A10 Approximation by polynomials Keywords:spherical triangles; trigonometric polynomials; spherical polynomials; Dubiner distance; Chebyshev norming grids; Fekete-like points; polynomial interpolation Software:dCATCH; Algorithm 623 PDF BibTeX XML Cite \textit{A. Sommariva} and \textit{M. Vianello}, Mediterr. J. Math. 19, No. 2, Paper No. 68, 17 p. (2022; Zbl 1504.65025) Full Text: DOI References: [1] An, C.; Chen, X.; Sloan, IH; Womersley, R., Well conditioned spherical designs for integration and interpolation on the two-sphere, SIAM J. Numer. Anal., 48, 2135-2157 (2010) · Zbl 1232.65043 [2] Baramidze, V.; Lai, MJ; Shum, CK, Spherical splines for data interpolation and fitting, SIAM J. Sci. Comput., 28, 241-259 (2006) · Zbl 1116.65010 [3] Bos, L., A simple recipe for modelling a d-cube by Lissajous curves, Dolomites Res. Notes Approx., 10, 1-4 (2017) · Zbl 1372.65029 [4] Bos, L.; Vianello, M., Low cardinality admissible meshes on quadrangles, triangles and disks, Math. Inequal. Appl., 15, 229-235 (2012) · Zbl 1238.41005 [5] Bos, L.; Levenberg, N.; Waldron, S., Pseudometrics, distances and multivariate polynomial inequalities, J. Approx. Theory, 153, 80-96 (2008) · Zbl 1154.41007 [6] Bos, L.; De Marchi, S.; Sommariva, A.; Vianello, M., Computing multivariate Fekete and Leja points by numerical linear algebra, SIAM J. Numer. Anal., 48, 1984-1999 (2010) · Zbl 1221.41005 [7] Bos, L.; Calvi, J-P; Levenberg, N.; Sommariva, A.; Vianello, M., Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, Math. Comput., 80, 1601-1621 (2011) · Zbl 1228.41002 [8] Calvi, JP; Levenberg, N., Uniform approximation by discrete least squares polynomials, J. Approx. Theory, 152, 82-100 (2008) · Zbl 1145.41001 [9] Carfora, MF, Interpolation on spherical geodesic grids: a comparative study, J. Comput. Appl. Math., 210, 99-105 (2007) · Zbl 1134.65011 [10] Civril, A.; Magdon-Ismail, M., On selecting a maximum volume sub-matrix of a matrix and related problems, Theor. Comput. Sci., 410, 4801-4811 (2009) · Zbl 1181.15002 [11] Dessole, M., Marcuzzi, F., Sommariva, A., Vianello, M., dCATCH: numerical package for d-variate polynomial fitting (2020). https://www.math.unipd.it/ marcov/dCATCH.html. Accessed 18 February 2022 [12] Dessole, M., Marcuzzi, F., Vianello, M.: dCATCH: a numerical package for d-variate near G-optimal Tchakaloff regression via fast NNLS, MDPI-Math. 8(7) (2020) - Special Issue “Numerical Methods” [13] Dubiner, M., The theory of multidimensional polynomial approximation, J. Anal. Math., 67, 39-116 (1995) · Zbl 0857.41006 [14] Freeden, W.; Nashed, ZM; Schreiner, M., Spherical Sampling (2018), Cham: Birkhäuser, Cham · Zbl 1396.86002 [15] Gentile, M.; Sommariva, A.; Vianello, M., Polynomial approximation and quadrature on geographic rectangles, Appl. Math. Comput., 297, 159-179 (2017) · Zbl 1411.65039 [16] Kroó, A., On optimal polynomial meshes, J. Approx. Theory, 163, 1107-1124 (2011) · Zbl 1229.65049 [17] Piazzon, F.; Vianello, M., Markov inequalities, Dubiner distance, norming meshes and polynomial optimization on convex bodies, Optim. Lett., 13, 1325-1343 (2019) · Zbl 1434.90156 [18] Renka, RJ, Algorithm 623: interpolation on the surface of a sphere, ACM Trans. Math. Software, 10, 437-439 (1984) [19] Sloan, IH; Womersley, RS, How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., 14, 195-226 (2001) · Zbl 0980.41003 [20] Sommariva, A., Vianello, M.: Near-algebraic Tchakaloff-like quadrature on spherical triangles. Appl. Math. Lett. 120, 107282 (2021) · Zbl 07410101 [21] Sommariva, A., Vianello, M.: Software package for polynomial interpolation on spherical triangles, alpha version (2021). https://www.math.unipd.it/ marcov/alvise/software.html. Accessed 18 February 2022 · Zbl 07410101 [22] Sommariva, A.; Vianello, M., Computing approximate Fekete points by QR factorizations of Vandermonde matrices, Comput. Math. Appl., 57, 1324-1336 (2009) · Zbl 1186.65028 [23] Sommariva, A.; Vianello, M., Numerical hyperinterpolation over spherical triangles, Math. Comput. Simul., 190, 15-22 (2021) · Zbl 07431500 [24] Stillwell, J., The Four Pillars of Geometry (2005), New York: Springer, New York · Zbl 1081.51001 [25] Vianello, M., Subperiodic Dubiner distance, norming meshes and trigonometric polynomial optimization, Optim. Lett., 12, 1659-1667 (2018) · Zbl 1414.90332 [26] Vianello, M., Chebyshev-Dubiner norming webs on starlike polygons, J. Inequal. Spec. Funct., 10-3, 26-32 (2019) [27] Xu, Y., Polynomial interpolation on the unit sphere, SIAM J. Numer. Anal., 41, 751-766 (2003) · Zbl 1065.41008 [28] zu Castell, W.; Lain Fernandez, N.; Xu, Y., Polynomial interpolation on the unit sphere. II, Adv. Comput. Math., 26, 155-171 (2007) · Zbl 1109.41004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.