×

The smoothed particle hydrodynamics method via residual iteration. (English) Zbl 1441.76088

Summary: In this paper we propose for the first time an iterative approach of the Smoothed Particle Hydrodynamics (SPH) method. The method is widespread in many areas of science and engineering and despite its extensive application it suffers from several drawbacks due to inaccurate approximation at boundaries and at irregular interior regions. The presented iterative process improves the accuracy of the standard method by updating the initial estimates iterating on the residuals. It is appealing preserving the matrix-free nature of the method and avoiding to modify the kernel function. Moreover the process refines the SPH estimates and it is not affected by disordered data distribution. We discuss on the numerical scheme and experiments with a bivariate test function and different sets of data validate the adopted approach.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Chen, X.; Jung, J. H., Matrix stability of multiquadric radial basis function methods for hyperbolic equations with uniform centers, J. Sci. Comput., 51, 3, 683-702 (2012) · Zbl 1252.65154
[2] Chowdhury, A.; Wittek, A.; Miller, K.; Joldes, G. R., An element free galerkin method based on the modified moving least squares approximation, J. Sci. Comput., 1-15 (2016)
[3] Francomano, E.; Hilker, F. M.; Paliaga, M.; Venturino, E., Separatrix reconstruction to identify tipping points in an eco-epidemiological model, Appl. Math. Comput., 80-91 (2018) · Zbl 1426.92051
[4] Francomano, E.; Hilker, F. M.; Paliaga, M.; Venturino, E., An efficient method to reconstruct invariant manifolds of saddle points, Dolomites Res. Notes Approx., 10, 25-30 (2017) · Zbl 1370.34078
[5] Li, B.; Habbal, F.; Ortiz, M., Optimal transportation meshfree approximation schemes for fluid and plastic flows, J. Numer. Methods Engrg., 83, 1541-1579 (2010) · Zbl 1202.74200
[6] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application on spherical stars, Monthly Notices Roy. Astronom. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[7] Lucy, L. B., A numerical approach to the testing of fusion process, Astron. J., 82, 1013-1024 (1977)
[8] Ala, G.; Francomano, E., A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation, Numer. Algorithms, 62, 4, 541-558 (2013) · Zbl 1269.78016
[9] Ala, G.; Francomano, E.; Tortorici, A.; Toscano, E.; Viola, F., Corrective meshless particle formulations for time domain Maxwell’s equations, J. Comput. Appl. Math., 210, 34-46 (2006) · Zbl 1132.78016
[10] Ala, G.; Francomano, E.; Ganci, S., Unconditionally stable meshless integration of time-domain Maxwell’s curl equations, Appl. Math. Comput., 255, 15, 157-164 (2015) · Zbl 1338.78025
[11] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): An overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[12] Ma, S.; Zhang, X.; Lian, Y.; Zhou, X., Simulation of high explosive explosion using adaptive material point method, Comput. Model. Eng. Sci., 39, 101-123 (2009) · Zbl 1257.76045
[13] Shao, S., Incompressible smoothed particle hydrodynamics simulation of multifluid flows, Internat. J. Numer. Methods Fluids, 69, 11, 1715-1735 (2012) · Zbl 1253.76107
[14] Schwaiger, H. F., An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions, Internat. J. Numer. Methods Engrg., 75, 6, 647-671 (2008) · Zbl 1195.80037
[15] Ulrich, C.; Leonardi, M.; Rung, T., Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems, Ocean Eng., 64, 109-121 (2013)
[16] Francomano, E.; Ala, G.; Paliaga, M., Improved fast Gauss transform for meshfree electromagnetic transients simulations, Appl. Math. Lett., 95, 130-136 (2019) · Zbl 1459.78001
[17] Ala, G.; Francomano, E., Numerical investigations of an implicit leapfrog time-domain meshless method, J. Sci. Comput., 62, 3, 898-912 (2014) · Zbl 1323.78019
[18] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree methods, Internat. J. Numer. Methods Engrg., 43, 785-819 (1998) · Zbl 0939.74076
[19] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Internat. J. Numer. Methods Engrg., 47, 1189-1214 (2000) · Zbl 0964.76071
[20] Liu, M. B.; Liu, G. R.; Lam, K. Y., Constructing smoothing functions in smoothed particle hydrodynamics with applications, J. Comput. Appl. Math., 155, 263-284 (2003) · Zbl 1065.76167
[21] Liu, M. B.; Xie, W. P.; Liu, G. R., Restoring particle inconsistency in smoothed particle hydrodynamics, Appl. Numer. Math., 56, 1, 19-36 (2006) · Zbl 1329.76285
[22] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[23] Fasshauer, G. E., (Meshfree Approximation Methods with MATLAB. Meshfree Approximation Methods with MATLAB, Interdiscip. Math. Sci., vol. 6 (2007), World Scientific: World Scientific Hackensack, NJ) · Zbl 1123.65001
[24] Fasshauer, G. E.; Zhang, J. G., Iterated approximate moving least square appoximation, (Advances in Meshfree Techniques (2007), Springer), 221-239 · Zbl 1323.65009
[25] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics - A Mesh-Free Particle Method (2003), World Scientific Publishing: World Scientific Publishing Singapore · Zbl 1046.76001
[26] Francomano, E.; Paliaga, M., Highlighting numerical insights of an efficient SPH method, Appl. Math. Comput., 339, 899-915 (2018) · Zbl 1428.76154
[27] Buhmann, M. D., (Radial Basis Functions: Theory and Implementations. Radial Basis Functions: Theory and Implementations, Cambridge Monogr. Appl. Comput. Math., vol. 12 (2003), Cambridge University Press) · Zbl 1038.41001
[28] Golub, G. H.; Van Loan, C. F., Matrix Computations (2012), Johns Hopkins, University Press, Baltimore, MD
[29] Halton, J. H., On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2, 84-90 (1960) · Zbl 0090.34505
[30] Sobol, I. M., Distribution of points in a cube and approximate evaluation of integrals, U.S.S.R Comput. Maths. Math. Phys., 7, 86-112 (1967) · Zbl 0185.41103
[31] Renka, R. J.; Brown, R., Algorithm 792 : accuracy test of ACM algorithms for interpolation of scattered data in the plane, ACM Trans. Math. Software, 25, 78-94 (1999) · Zbl 0963.65014
[32] Thacker, W. I.; Zhang, W. I.; Watson, L. T.; Birch, J. B.; Iyer, M. A.; Berry, M. W., Algorithm 905: SHEPPACK-modified shepard algorithm for interpolation of scattered multivariate data, ACM Trans. Math. Software, 37, 3, 1-20 (2010) · Zbl 1364.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.