Parajdi, Lorand Gabriel Stability of the equilibria of a dynamic system modeling stem cell transplantation. (English) Zbl 1466.37074 Ric. Mat. 69, No. 2, 579-601 (2020). Summary: This paper provides a complete analysis of the stability of the steady-states for a three-dimensional system modeling cell dynamics after bone marrow transplantation in chronic myeloid leukemia. There are given results for both chronic and accelerated-acute phases of the disease. MSC: 37N25 Dynamical systems in biology 92C32 Pathology, pathophysiology 92C50 Medical applications (general) Keywords:stability; dynamical system; numerical simulations; mathematical modeling Software:Maple PDF BibTeX XML Cite \textit{L. G. Parajdi}, Ric. Mat. 69, No. 2, 579--601 (2020; Zbl 1466.37074) Full Text: DOI References: [1] Cucuianu, A.; Precup, R., A hypothetical-mathematical model of acute myeloid leukemia pathogenesis, Comput. Math. Methods Med., 11, 49-65 (2010) · Zbl 1202.92035 [2] De Conde, R.; Kim, PS; Levy, D.; Lee, PP, Post-transplantation dynamics of the immune response to chronic myelogenous leukemia, J. Theor. Biol., 236, 39-59 (2005) · Zbl 1442.92029 [3] Dingli, D.; Michor, F., Successful therapy must eradicate cancer stem cells, Stem Cells, 24, 2603-2610 (2006) [4] England, JP; Krauskopf, B.; Osinga, HM, Computing two-dimensional global invariant manifolds in slow-fast systems, Int. J. Bifurc. Chaos, 17, 3, 805-822 (2007) · Zbl 1140.37365 [5] Francomano, E.; Hilker, FM; Paliaga, M.; Venturino, E., An efficient method to reconstruct invariant manifolds of saddle points, Dolomites Res. Notes Approx., 10, 25-30 (2017) · Zbl 1370.34078 [6] Gradshteym, IS; Ryzhik, IM, Tables of Integrals, Series, and Products (2000), San Diego: Academic Press, San Diego [7] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), New York: Springer, New York · Zbl 0515.34001 [8] Heck, A., Introduction to Maple (2003), New York: Springer, New York [9] Ilyin, VA; Poznyak, EG, Analytic Geometry (1984), Moscow: Mir Publishers, Moscow [10] Kim, PS; Lee, PP; Levy, D., Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective, Biology and Control Theory: Current Challenges (2007), Berlin: Springer, Berlin [11] Krauskopf, B.; Osinga, H., Two-dimensional global manifolds of vector fields, Chaos, 9, 3, 768-774 (1999) · Zbl 0983.37110 [12] Marciniak-Czochra, A.; Stiehl, T.; Bock, H.; Carraro, T.; Jaeger, W.; Koerkel, S., Mathematical models of hematopoietic reconstitution after stem cell transplantation, Model Based Parameter Estimation: Theory and Applications, 191-206 (2011), Heidelberg: Springer, Heidelberg · Zbl 1303.92027 [13] Mehta, J.; Powles, R.; Treleaven, J.; Kulkarni, S.; Horton, C.; Singhal, S., Number of nucleated cells infused during allogeneic and autologous bone marrow transplantation: an important modifiable factor influencing outcome, Blood, 90, 9, 3808-10 (1997) [14] Neiman, B.: A mathematical model of chronic myelogenous leukemia, Oxford University (2000). https://ora.ox.ac.uk/objects/uuid:4bb8a627-0747-4629-a9fd-a8e542409174/download_file?file_format=pdf&safe_filename=neiman.pdf&type_of_work=Thesis [15] Parajdi, LG; Precup, R., Analysis of a planar differential system arising from hematology, Stud. Univ. Babeş-Bolyai Math., 63, 235-244 (2018) · Zbl 1438.34160 [16] Parajdi, L.G., Precup, R., Bonci, E.-A., Tomuleasa, C.: A mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia, submitted [17] Precup, R., Mathematical understanding of the autologous stem cell transplantation, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 10, 155-167 (2012) · Zbl 1313.92027 [18] Precup, R., Arghirescu, S., Cucuianu, A., Serban, M.: Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation. Int. J. Biomath. 5(2), 1-18 Article 1250026 (2012) · Zbl 1297.92043 [19] Precup, R.; Şerban, MA; Trif, D.; Cucuianu, A., A planning algorithm for correction therapies after allogeneic stem cell transplantation, J. Math. Modell. Algorithm, 11, 309-323 (2012) · Zbl 1402.92254 [20] Precup, R.; Şerban, MA; Trif, D., Asymptotic stability for a model of cellular dynamics after allogeneic bone marrow transplantation, Nonlinear Dynamics Syst. Theory, 13, 79-92 (2013) · Zbl 1335.37060 [21] Séroul, R., Programming for Mathematicians (2000), Berlin: Springer, Berlin · Zbl 0938.68002 [22] Slavin, S.; Nagler, A.; Naparstek, E., Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases, Blood, 91, 3, 756-63 (1998) [23] Stiehl, T.; Ho, A.; Marciniak-Czochra, A., The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling, Bone Marrow Transpl., 49, 30-37 (2014) [24] Trif, D.: LaguerreEig (2011) https://www.mathworks.com/matlabcentral/fileexchange/24266-laguerreeig [25] Vincent, PC; Rutzen-Loesevitz, L.; Tibken, B.; Heinze, B.; Hofer, EP; Fliedner, TM, Relapse in chronic myeloid leukemia after bone marrow transplantation: biomathematical modeling as a new approach to understanding pathogenesis, Stem Cells, 17, 9-17 (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.