×

A mixed symmetric Chernoff type inequality and its stability properties. (English) Zbl 1470.52013

Let \(\alpha\) be a convex curve in the Euclidean plane. The classical Chernoff inequality states that \[A\leq \frac{1}{2}\int_{0}^{\pi/2}w(\theta)w\left(\theta+\frac{\pi}{2}\right)d\theta,\] where \(A\) denotes the area and \(w\) the width function of \(\alpha\). Equality holds if and only if \(\alpha\) is a circle.
For \(k\geq 2\), the \(k\)-order width function \(w_k\) is defined by \[w_k(\theta)=h(\theta)+\dots+h\left(\theta+\frac{2(k-1)\pi}{k}\right),\quad \theta\in[0,2\pi)\] where \(h\) denotes the support function of \(\alpha\).
The author proves the following mixed Chernoff type inequality for two convex domains \(P\) and \(Q\): \[\sqrt{A_PA_Q}\leq \frac{1}{2k}\int_{0}^{\frac{2\pi}{k}}w_k(P,\theta)w_k(Q,\theta+\frac{\pi}{k})d\theta,\] with equality if and only if \(P\) and \(Q\) are circles.
A related inequality involving the Wigner caustic of a convex body and a stability result for the obtained mixed symmetric Chernoff type inequality are also proved in the paper.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A10 Convex sets in \(2\) dimensions (including convex curves)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonnesen, T.; Fenchel, W., Theorie der Convxen Körper (1948), New York: Chelsea Publishing, New York · JFM 60.0673.01
[2] Böröczky, KJ, Stability of the Blaschke-Santaló, and the affine isoperimetric inequalities, Adv. Math., 225, 1914-1928 (2010) · Zbl 1216.52007 · doi:10.1016/j.aim.2010.04.014
[3] Burago, YD; Zalgaller, VA, Geometric Inequalities (1988), Berlin: Springer, Berlin · Zbl 0633.53002 · doi:10.1007/978-3-662-07441-1
[4] Chernoff, PR, An area-width inequality for convex curves, Am. Math. Monthly, 76, 34-35 (1969) · Zbl 0175.19501 · doi:10.1080/00029890.1969.12000123
[5] Cufí, J.; Gallego, E.; Reventós, A., A note on Hurwitz’s inequality, J. Math. Anal. Appl., 458, 436-451 (2018) · Zbl 1378.52008 · doi:10.1016/j.jmaa.2017.09.017
[6] Edler, F.: Vervollständigung der Steiner’schen elementar-geometrischen Beweise für den Satz, dass der Kreis grösseren Flächeninhalt besitzt als jedeandere ebene Figur gleich grossen Umfanges. G“ott. N., 73-80 (1882) (translated into French and printed in Bull. Sci. Math., 7(2), 198-204 (1883)) · JFM 14.0463.04
[7] Figalli, A.; Indrei, E., A sharp stability result for the relative isoperimetric inequality inside convex cones, J. Geom. Anal., 23, 938-969 (2013) · Zbl 1262.49045 · doi:10.1007/s12220-011-9270-4
[8] Figalli, A.; Maggi, F.; Pratelli, A., A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182, 167-211 (2010) · Zbl 1196.49033 · doi:10.1007/s00222-010-0261-z
[9] Fuglede, B., Stability in the isoperimetric problem, Bull. Lond. Math. Soc., 18, 599-605 (1986) · Zbl 0603.49018 · doi:10.1112/blms/18.6.599
[10] Fusco, N.: The classical isoperimetric theorem, https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/377226 · Zbl 1096.49024
[11] Fusco, N.; Maggi, F.; Pratelli, A., The sharp quantitative isoperimetric inequality, Ann. Math., 168, 941-980 (2008) · Zbl 1187.52009 · doi:10.4007/annals.2008.168.941
[12] Gao, L.; Wang, YL, Stability properties of the generalized Chernoff inequality, Math. Inequal. Appl., 15, 281-287 (2012) · Zbl 1275.52007
[13] Gardner, RJ, Brunn-Minkowski inequality, Bull. Am. Math. Soc., 39, 355-405 (2002) · Zbl 1019.26008 · doi:10.1090/S0273-0979-02-00941-2
[14] Groemer, H., Stability theorems for convex domains of constant width, Can. Math. Bull., 31, 328-337 (1988) · Zbl 0656.52007 · doi:10.4153/CMB-1988-048-3
[15] Groemer, H., Stability properties of geometric inequalities, Am. Math. Monthly, 97, 382-394 (1990) · Zbl 0721.52001 · doi:10.1080/00029890.1990.11995611
[16] Groemer, H., Stability theorems for two measures of symmetry, Discrete Comput. Geom., 24, 301-311 (2000) · Zbl 0960.52005 · doi:10.1007/s004540010037
[17] Groemer, H.; Schneider, R., Stability estimates for some geometric inequalities, Bull. Lond. Math. Soc., 23, 67-74 (1991) · Zbl 0701.52002 · doi:10.1112/blms/23.1.67
[18] Hurwitz, A.: Sur quelques applications géométriques des séries de Fourier. Ann. Sci. I’É. N.S., 19(3e série), 357-408 (1902) · JFM 33.0599.02
[19] Indrei, E., A sharp lower bound on the polygonal isoperimetric deficit, Proc. Am. Math. Soc., 144, 3115-3122 (2016) · Zbl 1345.52005 · doi:10.1090/proc/12947
[20] Indrei, E.; Nurbekyan, L., On the stability of the polygonal isoperimetric inequality, Adv. Math., 276, 62-86 (2015) · Zbl 1316.35007 · doi:10.1016/j.aim.2015.02.013
[21] Lutwak, E., Mixed width-integrals of convex bodies, Isr. J. Math., 28, 249-253 (1977) · Zbl 0363.52009 · doi:10.1007/BF02759811
[22] Osserman, R., The isoperimetric inequality, Bull. Am. Math. Soc., 84, 1182-1238 (1978) · Zbl 0411.52006 · doi:10.1090/S0002-9904-1978-14553-4
[23] Osserman, R., Bonnesen-style isoperimetric inequalities, Am. Math. Monthly, 86, 1, 1-29 (1979) · Zbl 0404.52012 · doi:10.1080/00029890.1979.11994723
[24] Ou, K.; Pan, SL, Some remarks about closed convex curves, Pacif. J. Math., 2, 393-401 (2010) · Zbl 1211.52003 · doi:10.2140/pjm.2010.248.393
[25] Pan, SL; Xu, HP, Stability of a reverse isoperimetric inequality, J. Math. Anal. Appl., 350, 348-353 (2009) · Zbl 1159.52011 · doi:10.1016/j.jmaa.2008.09.047
[26] Pan, SL; Zhang, H., A reverse isoperimetric inequality for convex plane curves, Beiträge Algebra Geom., 48, 303-308 (2007) · Zbl 1121.52023
[27] Schneider, R., A stability estimate for the Aleksandrov-Fenchel inequality, with an application to mean curvature, Manuscr. Math., 69, 291-300 (1990) · Zbl 0713.52003 · doi:10.1007/BF02567927
[28] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory(second (2013), Canbridge: Cambridge University Press, Canbridge · Zbl 1287.52001 · doi:10.1017/CBO9781139003858
[29] Steiner, J.: Sur le maximum et le minimum des figures dans le plan, sur la sphère, et dans l’espace en général, I and II. J. Reine Angew. Math. (Crelle), 24, 93-152 and 189-250 (1842) · ERAM 024.0720cj
[30] Wang, P.; Xu, W.; Zhou, J.; Zhu, B., On Bonnesen-style symmetric mixed inequality of two planar convex domains, Sci. China Math., 45, 245-254 (2015) · Zbl 1488.52002
[31] Xu, W., Zhou, J., Zhu, B.: Bonnesen-style symmetric mixed isoperimetric inequality. In: Real and Complex Submanifold, Springer Proceedings in Mathematics and Statistics, vol. 106, pp. 97-107 (2014) · Zbl 1319.52013
[32] Zeng, C.; Zhou, J.; Yue, S., The symmetric mixed isoperimetric inequality of two planar convex domains, Acta Math. Sin., 55, 355-362 (2012) · Zbl 1265.52003
[33] Zhang, DY, Inequalities with curvature and their stability estimates for convex curves, J. Math. Inequal., 10, 433-443 (2016) · Zbl 1338.52010 · doi:10.7153/jmi-10-34
[34] Zwierzyński, M., The improved isoperimetric inequality and the Wigner caustic of planar ovals, J. Math. Anal. Appl., 442, 726-739 (2016) · Zbl 1341.52018 · doi:10.1016/j.jmaa.2016.05.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.