Oguntala, George; Sobamowo, Gbeminiyi; Abd-Alhameed, Raed; Jones, Stephen Efficient iterative method for investigation of convective-radiative porous fin with internal heat generation under a uniform magnetic field. (English) Zbl 1446.76162 Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 13, 19 p. (2019). Summary: This paper is aimed at presenting an efficient iterative approach using Daftardar-Gejiji and Jafari method (DJM) for the analysis of thermal behaviour of convective-radiative porous fin with internal heat generation under a uniform magnetic field. The developed heat transfer models are used to investigate the effects of convective, radiative, and magnetic parameters on the thermal performance of the porous fin. From the study, we establish that increase in porosity, convective, radiative and magnetic parameters increase the heat transferred by the fin, which subsequently improves the fin efficiency. In addition, there is significant increase in heat transfer at the base of the fin whenever the thermal conductivity of the fin decreases. The result of DJM is validated by an established result of Adomian decomposition method, and compared with the results of numerical method using first-order Runge-Kutta with shooting method and homotopy analysis method. The comparison shows that Daftardar-Gejiji and Jafari’s method exhibits higher accuracy than the established two results. Cited in 1 Document MSC: 76S05 Flows in porous media; filtration; seepage 80A19 Diffusive and convective heat and mass transfer, heat flow 80A21 Radiative heat transfer Keywords:Daftardar-Gejiji and Jafari method; iterative method; thermal analysis; porous fin; convective-radiative fin; magnetic field PDF BibTeX XML Cite \textit{G. Oguntala} et al., Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 13, 19 p. (2019; Zbl 1446.76162) Full Text: DOI References: [1] Bhanja, D., Kundu, B., Aziz, A.: Enhancement of heat transfer from a continuously moving porous fin exposed in convective – radiative environment. Energy Convers. Manag. 88, 842-853 (2014) [2] Kiwan, S., Al-Nimr, M.A.: Using porous fins for heat transfer enhancement. J. Heat Transf. 123, 790-795 (2000) [3] Kiwan, S.: Thermal analysis of natural convection porous fins. Transp. Porous Media 67, 17 (2006) [4] Kiwan, S.: Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46, 1046-1055 (2007) [5] Kiwan, S., Zeitoun, O.: Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Methods Heat Fluid Flow 18, 618-634 (2008) [6] Rahimi-Gorji, M., Pourmehran, O., Hatami, M., Ganji, D.D.: Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis. Eur. Phys. J. Plus 130, 22 (2015) [7] Gorla, R.S.R., Bakier, A.Y.: Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transf. 38, 638-645 (2011) [8] Kundu, B.: Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transf. 50, 1545-1558 (2007) · Zbl 1124.80339 [9] Kundu, B., Bhanja, D.: An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrig 34, 337-352 (2011) [10] Kundu, B., Bhanja, D., Lee, K.-S.: A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transf. 55, 7611-7622 (2012) [11] Bhanja, D., Kundu, B.: Thermal analysis of a constructal T-shaped porous fin with radiation effects. Int. J. Refrig 34, 1483-1496 (2011) [12] Taklifi, A., Aghanajafi, C., Akrami, H.: The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp. Porous Media 85, 215-231 (2010) [13] Seyfolah Saedodin, M.O.: Temperature distribution in porous fins in natural convection condition. J. Am. Sci. 7, 476-481 (2011) [14] Saedodin, S., Sadeghi, S.: Temperature distribution in long porous fins in natural convection condition. Middle East J. Sci. Res. 13, 812 (2013) [15] Darvishi, M.T., Subba, Rama, Gorla, Rama, Aziz, Abdul: Thermal performance of a porous radial fin with natural convection and radiative heat losses. Therm. Sci. 19, 669-678 (2012) [16] Hatami, M., Ganji, D.D.: Thermal performance of circular convective – radiative porous fins with different section shapes and materials. Energy Convers. Manag. 76, 185-193 (2013) [17] Hatami, M., Ganji, D.D.: Thermal behaviour of longitudinal convective – radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceram. Int. 40, 6765-6775 (2014) [18] Hatami, M., Ganji, D.D.: Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. Int. J. Refrig 40, 140-151 (2014) [19] Oguntala, G., Abd-Alhameed, R., Sobamowo, G.: On the effect of magnetic field on thermal performance of convective – radiative fin with temperature-dependent thermal conductivity. Karbala Int. J. Mod. Sci. 4, 1-11 (2018) [20] Mosayebidorcheh, S., Ganji, D.D., Farzinpoor, M.: Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient. Propuls. Power Res. 3, 41-47 (2014) [21] Oguntala, G.A., Abd-Alhameed, R.A., Sobamowo, G.M., Eya, N.: Effects of particles deposition on thermal performance of a convective – radiative heat sink porous fin of an electronic component. Therm. Sci. Eng. Prog. 6, 177-185 (2018) [22] Roy, P.K., Mondal, H., Mallick, A.: A decomposition method for convective – radiative fin with heat generation. Ain Shams Eng. J. 6, 307-313 (2015) [23] Hoshyar, H., Ganji, D.D., Majidian, A.R.: Least square method for porous fin in the presence of uniform magnetic field. J. Appl. Fluid Mech. 9, 661-668 (2016) [24] Saedodin, S., Shahbabaei, M.: Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM). Arab. J. Sci. Eng. 38, 2227-2231 (2013) [25] Darvishi, M.T., Subba, R., Gorla, R., Khani, F., Aziz, A.: Thermal performance of a porous radial fin with natural convection and radiative heat losses. Therm. Sci. 19, 669-678 (2015) [26] Moradi, A., Hayat, T., Alsaedi, A.: Convection – radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers. Manag. 77, 70-77 (2014) [27] Hoshyar, H., Ganji, D.D., Abbasi, M.: Determination of temperature distribution for porous fin with temperature-dependent heat generation by homotopy analysis method. J. Appl. Mech. Eng. 4, 153 (2015) · Zbl 1359.80007 [28] Oguntala, G.A., Abd-Alhameed, R.A.: Haar wavelet collocation method for thermal analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation. J. Appl. Comput. Mech. 3, 185-191 (2017) [29] Oguntala, G., Abd-Alhameed, R.: Thermal analysis of convective – radiative fin with temperature-dependent thermal conductivity using Chebychev spectral collocation method. J. Appl. Comput. Mech. 4(2), 87-94 (2018). https://doi.org/10.22055/JACM.2017.22435.1130 [30] Das, R.: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin. Energy Convers. Manag. 87, 96-106 (2014) [31] Rostamiyan, Y., Ganji, D.D., Petroudi, R.I., Nejad, K.M.: Analytical investigation of nonlinear model arising in heat transfer through the porous fin. Therm. Sci. 18, 409-417 (2014) [32] Ghasemi, S.E., Valipour, P., Hatami, M., Ganji, D.D.: Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J. Cent. South Univ. 21, 4592-4598 (2014) [33] Sobamowo, M.G., Kamiyo, O.M., Adeleye, O.A.: Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Therm. Sci. Eng. Prog. 1, 39-52 (2017) [34] Hoshyar, H., Rahimipetroudi, I., Ganji, D.D., Majidian, A.R.: Thermal performance of porous fins with temperature-dependent heat generation via the homotopy perturbation method and collocation method. J. Appl. Math. Comput. Mech. 14, 53-65 (2015) · Zbl 07251916 [35] Rezazadeh Amirkolaei, S., Ganji, D.D., Salarian, H.: Determination of temperature distribution for porous fin which is exposed to uniform magnetic field to a vertical isothermal surface by homotopy analysis method and collocation method. Indian J. Sci. Res. 1, 215-222 (2014) [36] Mosayebidorcheh, S., Sheikholeslami, M., Hatami, M., Ganji, D.D.: Analysis of turbulent MHD Couette nanofluid flow and heat transfer using hybrid DTM-FDM. Particuology 26, 95-101 (2016) [37] Daftardar-Gejji, V., Jafari, H.: An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316, 753-763 (2006) · Zbl 1087.65055 [38] Bhalekar, S., Daftardar-Gejji, V.: New iterative method: application to partial differential equations. Appl. Math. Comput. 203, 778-783 (2008) · Zbl 1154.65363 [39] Daftardar-Gejji, V., Bhalekar, S.: Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Comput. Math Appl. 59, 1801-1809 (2010) · Zbl 1189.35357 [40] Daftardar-Gejji, V., Bhalekar, S.: An iterative method for solving fractional differential equations. PAMM 7, 2050017-2050018 (2007) [41] Bhalekar, S., Daftardar-Gejji, V.: Solving evolution equations using a new iterative method. Numer. Methods Partial Differ. Equ. 26, 906-916 (2010) · Zbl 1194.65117 [42] Jafari, H., Seifi, S., Alipoor, A., Zabihi, M.: An iterative method for solving linear and nonlinear fractional diffusion-wave equation. Int. e-J. Numer. Anal. Relat. Top. 3, 20-32 (2009) [43] Yaseen, M., Samraiz, M.: The modified new iterative method for solving linear and nonlinear Klein-Gordon equations. Appl. Math. Sci. 6, 2979-2987 (2012) · Zbl 1266.65179 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.