Azizi, Hadi Du Fort-Frankel scheme for the variable order time fractional diffusion equation. (English) Zbl 07707396 J. Math. Ext. 17, No. 2, Paper No. 10, 15 p. (2023). MSC: 65M06 35A25 PDF BibTeX XML Cite \textit{H. Azizi}, J. Math. Ext. 17, No. 2, Paper No. 10, 15 p. (2023; Zbl 07707396) Full Text: DOI
Pan, Xintian; Zhang, Luming A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation. (English) Zbl 1515.65269 Demonstr. Math. 56, Article ID 20220204, 13 p. (2023). MSC: 65N06 65M06 65N12 35C08 47H10 35Q51 35Q53 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Demonstr. Math. 56, Article ID 20220204, 13 p. (2023; Zbl 1515.65269) Full Text: DOI
Salhi, Loubna; Seaid, Mohammed; Yakoubi, Driss Well-posedness and numerical approximation of steady convection-diffusion-reaction problems in porous media. (English) Zbl 07595301 Comput. Math. Appl. 124, 129-148 (2022). MSC: 76S05 65N30 80A20 76V05 35Q35 PDF BibTeX XML Cite \textit{L. Salhi} et al., Comput. Math. Appl. 124, 129--148 (2022; Zbl 07595301) Full Text: DOI
Kumar, Raj; Kumar, Avneesh More solutions of coupled equal width wave equations arising in plasma and fluid dynamics. (English) Zbl 1513.35036 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 186, 13 p. (2022). MSC: 35B06 22E70 35C07 PDF BibTeX XML Cite \textit{R. Kumar} and \textit{A. Kumar}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 186, 13 p. (2022; Zbl 1513.35036) Full Text: DOI
Alfaqeih, Suliman; Mısırlı, Emine A novel conformable Laplace transform for conformable fractional Lane-Emden type equations. (English) Zbl 1513.44001 Int. J. Comput. Math. 99, No. 10, 2123-2138 (2022). MSC: 44A10 35Q85 PDF BibTeX XML Cite \textit{S. Alfaqeih} and \textit{E. Mısırlı}, Int. J. Comput. Math. 99, No. 10, 2123--2138 (2022; Zbl 1513.44001) Full Text: DOI
Rouatbi, Asma; Ghiloufi, Ahlem; Omrani, Khaled An efficient tool for solving the Rosenau-Burgers equation in two dimensions. (English) Zbl 1513.65305 Comput. Appl. Math. 41, No. 5, Paper No. 210, 23 p. (2022). MSC: 65M06 65N06 65M12 65M15 76B15 35Q35 35Q53 PDF BibTeX XML Cite \textit{A. Rouatbi} et al., Comput. Appl. Math. 41, No. 5, Paper No. 210, 23 p. (2022; Zbl 1513.65305) Full Text: DOI
Iqbal, Naveed; Albalahi, Abeer M.; Abdo, Mohammed S.; Mohammed, Wael W. Analytical analysis of fractional-order Newell-Whitehead-Segel equation: a modified homotopy perturbation transform method. (English) Zbl 1495.35192 J. Funct. Spaces 2022, Article ID 3298472, 10 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{N. Iqbal} et al., J. Funct. Spaces 2022, Article ID 3298472, 10 p. (2022; Zbl 1495.35192) Full Text: DOI
Edoh, Ametana; Zakari, Djibibe Moussa; Koulinté, Aleda Strongly generalized solution of a fractional problem of parabolic evolution of order-two in a plate with integral boundary conditions. (English) Zbl 1499.35632 Adv. Differ. Equ. Control Process. 26, 131-141 (2022). MSC: 35R11 35K70 35B45 46E30 35D30 35B30 PDF BibTeX XML Cite \textit{A. Edoh} et al., Adv. Differ. Equ. Control Process. 26, 131--141 (2022; Zbl 1499.35632) Full Text: DOI
Djibibe, Moussa Zakari; Soampa, Bangan; Tcharie, Kokou Uniqueness of the solutions of nonlocal pluriparabolic fractional problems with weighted integral boundary conditions. (English) Zbl 1499.35366 Adv. Differ. Equ. Control Process. 26, 103-112 (2022). MSC: 35K70 35B45 46E30 35D30 35B30 PDF BibTeX XML Cite \textit{M. Z. Djibibe} et al., Adv. Differ. Equ. Control Process. 26, 103--112 (2022; Zbl 1499.35366) Full Text: DOI
Areshi, Mounirah; El-Tantawy, S. A.; Alotaibi, B. M.; Zaland, Shamsullah Study of fuzzy fractional third-order dispersive KdV equation in a plasma under Atangana-Baleanu derivative. (English) Zbl 1486.35455 J. Funct. Spaces 2022, Article ID 7922001, 13 p. (2022). MSC: 35R13 35R11 35A22 35Q53 PDF BibTeX XML Cite \textit{M. Areshi} et al., J. Funct. Spaces 2022, Article ID 7922001, 13 p. (2022; Zbl 1486.35455) Full Text: DOI
Alkhezi, Yousuf; Shah, Nehad Ali; Ntwiga, Davis Bundi Analytical fuzzy analysis of a fractional-order Newell-Whitehead-Segel model with Mittag-Leffler kernel. (English) Zbl 1487.35431 J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022). MSC: 35R13 35R11 35A22 PDF BibTeX XML Cite \textit{Y. Alkhezi} et al., J. Funct. Spaces 2022, Article ID 2785379, 12 p. (2022; Zbl 1487.35431) Full Text: DOI
Ciancio, Armando; Yel, Gulnur; Kumar, Ajay; Baskonus, Haci Mehmet; Ilhan, Esin On the complex mixed dark-bright wave distributions to some conformable nonlinear integrable models. (English) Zbl 1507.35233 Fractals 30, No. 1, Article ID 2240018, 14 p. (2022). MSC: 35Q53 35Q51 35C08 35C09 35C20 35A24 37K10 PDF BibTeX XML Cite \textit{A. Ciancio} et al., Fractals 30, No. 1, Article ID 2240018, 14 p. (2022; Zbl 1507.35233) Full Text: DOI
Gumah, Ghaleb Numerical solutions of special fuzzy partial differential equations in a reproducing kernel Hilbert space. (English) Zbl 1499.35702 Comput. Appl. Math. 41, No. 2, Paper No. 80, 17 p. (2022). MSC: 35R13 PDF BibTeX XML Cite \textit{G. Gumah}, Comput. Appl. Math. 41, No. 2, Paper No. 80, 17 p. (2022; Zbl 1499.35702) Full Text: DOI
Dubey, Shweta; Chakraverty, S. Homotopy perturbation method for solving fuzzy fractional heat-conduction equation. (English) Zbl 1480.35403 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 159-169 (2022). MSC: 35R13 35R11 35K05 35K15 PDF BibTeX XML Cite \textit{S. Dubey} and \textit{S. Chakraverty}, Stud. Fuzziness Soft Comput. 412, 159--169 (2022; Zbl 1480.35403) Full Text: DOI
Osman, Mawia; Gong, Zengtai; Mustafa, Altyeb Mohammed; Yang, Hong Solving fuzzy \((1+ n)\)-dimensional Burgers’ equation. (English) Zbl 1494.35176 Adv. Difference Equ. 2021, Paper No. 219, 51 p. (2021). MSC: 35R13 65M55 PDF BibTeX XML Cite \textit{M. Osman} et al., Adv. Difference Equ. 2021, Paper No. 219, 51 p. (2021; Zbl 1494.35176) Full Text: DOI
Gaikwad, Kishor R.; Bhandwalkar, Vidhya G. Fractional order thermoelastic problem for finite piezoelectric rod subjected to different types of thermal loading – direct approach. (English) Zbl 1496.35379 J. Korean Soc. Ind. Appl. Math. 25, No. 3, 117-131 (2021). MSC: 35Q74 35B07 35G30 35K05 44A10 74F05 74F15 78A55 26A33 35R11 PDF BibTeX XML Cite \textit{K. R. Gaikwad} and \textit{V. G. Bhandwalkar}, J. Korean Soc. Ind. Appl. Math. 25, No. 3, 117--131 (2021; Zbl 1496.35379) Full Text: DOI
Khaled, Khachnaoui Nehari type solutions for fractional Hamiltonian systems. (English) Zbl 1486.35434 Chaos Solitons Fractals 147, Article ID 110943, 9 p. (2021). MSC: 35R11 35A15 37J46 PDF BibTeX XML Cite \textit{K. Khaled}, Chaos Solitons Fractals 147, Article ID 110943, 9 p. (2021; Zbl 1486.35434) Full Text: DOI
Usman, Muhammad; Hamid, Muhammad; Liu, Moubin Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions. (English) Zbl 1498.65177 Chaos Solitons Fractals 144, Article ID 110701, 20 p. (2021). MSC: 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{M. Usman} et al., Chaos Solitons Fractals 144, Article ID 110701, 20 p. (2021; Zbl 1498.65177) Full Text: DOI
Shivanian, Elyas; Jafarabadi, Ahmad Numerical investigation based on a local meshless radial point interpolation for solving coupled nonlinear reaction-diffusion system. (English) Zbl 1499.65579 Comput. Methods Differ. Equ. 9, No. 2, 358-374 (2021). MSC: 65M70 65M06 65N35 65D12 65D07 92E20 92C15 35Q92 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, Comput. Methods Differ. Equ. 9, No. 2, 358--374 (2021; Zbl 1499.65579) Full Text: DOI
Jafari, Hossein; Jassim, Hassan Kamil; Baleanu, Dumitru; Chu, Yu-Ming On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative. (English) Zbl 07465612 Fractals 29, No. 5, Article ID 2140012, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 29, No. 5, Article ID 2140012, 7 p. (2021; Zbl 07465612) Full Text: DOI
Injrou, Sami; Karroum, Ramez; Deeb, Nadia Various exact solutions for the conformable time-fractional generalized FitzHugh-Nagumo equation with time-dependent coefficients. (English) Zbl 1486.35106 Int. J. Differ. Equ. 2021, Article ID 8888989, 11 p. (2021). MSC: 35C05 35C07 35K57 35R11 PDF BibTeX XML Cite \textit{S. Injrou} et al., Int. J. Differ. Equ. 2021, Article ID 8888989, 11 p. (2021; Zbl 1486.35106) Full Text: DOI
Gaikwad, Kishor R.; Naner, Yogesh U. Green’s function approach to thermal deflection of a thin hollow circular disk under axisymmetric heat source. (English) Zbl 1479.35508 J. Korean Soc. Ind. Appl. Math. 25, No. 1, 1-15 (2021). MSC: 35K08 35B07 35K20 44A10 PDF BibTeX XML Cite \textit{K. R. Gaikwad} and \textit{Y. U. Naner}, J. Korean Soc. Ind. Appl. Math. 25, No. 1, 1--15 (2021; Zbl 1479.35508) Full Text: DOI
Bachraoui, Moussa; Hattaf, Khalid; Yousfi, Noura Spatiotemporal dynamics of fractional hepatitis B virus infection model with humoral and cellular immunity. (English) Zbl 1471.92090 Mondaini, Rubem P. (ed.), Trends in biomathematics: chaos and control in epidemics, ecosystems, and cells. Selected works from the 20th BIOMAT consortium lectures, Rio de Janeiro, Brazil, November 1–6, 2020. Cham: Springer. 293-313 (2021). MSC: 92C32 92C37 35R11 35B35 PDF BibTeX XML Cite \textit{M. Bachraoui} et al., in: Trends in biomathematics: chaos and control in epidemics, ecosystems, and cells. Selected works from the 20th BIOMAT consortium lectures, Rio de Janeiro, Brazil, November 1--6, 2020. Cham: Springer. 293--313 (2021; Zbl 1471.92090) Full Text: DOI
Wang, Xianhui; Li, Fanglin; Zhang, Bo; Yu, Jiangong; Zhang, Xiaoming Wave propagation in thermoelastic inhomogeneous hollow cylinders by analytical integration orthogonal polynomial approach. (English) Zbl 1481.74382 Appl. Math. Modelling 99, 57-80 (2021). MSC: 74J05 35Q74 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Modelling 99, 57--80 (2021; Zbl 1481.74382) Full Text: DOI
Lobato, F. S.; Lima, W. J.; Borges, R. A.; Cavalini, A. Ap. jun.; Steffen, V. jun. The solution of direct and inverse fractional advection-dispersion problems by using orthogonal collocation and differential evolution. (English) Zbl 07558594 Soft Comput. 24, No. 14, 10389-10399 (2020). MSC: 65-XX 35R11 PDF BibTeX XML Cite \textit{F. S. Lobato} et al., Soft Comput. 24, No. 14, 10389--10399 (2020; Zbl 07558594) Full Text: DOI
Islam, Md. Nurul; Asaduzzaman, Md.; Ali, Md. Shajib Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics. (English) Zbl 1484.35337 AIMS Math. 5, No. 1, 26-41 (2020). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{Md. N. Islam} et al., AIMS Math. 5, No. 1, 26--41 (2020; Zbl 1484.35337) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. (English) Zbl 1484.35382 AIMS Math. 5, No. 1, 1-14 (2020). MSC: 35R11 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, AIMS Math. 5, No. 1, 1--14 (2020; Zbl 1484.35382) Full Text: DOI
Ayata, Muammer; Özkan, Ozan A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation. (English) Zbl 1484.35373 AIMS Math. 5, No. 6, 7402-7412 (2020). MSC: 35R11 26A24 PDF BibTeX XML Cite \textit{M. Ayata} and \textit{O. Özkan}, AIMS Math. 5, No. 6, 7402--7412 (2020; Zbl 1484.35373) Full Text: DOI
Mezouar, Nadia; Boulaaras, Salah Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term. (English) Zbl 1487.35089 Bound. Value Probl. 2020, Paper No. 90, 28 p. (2020). MSC: 35B40 35L53 35L72 26A51 74D10 PDF BibTeX XML Cite \textit{N. Mezouar} and \textit{S. Boulaaras}, Bound. Value Probl. 2020, Paper No. 90, 28 p. (2020; Zbl 1487.35089) Full Text: DOI
Osman, Mawia; Gong, Zengtai; Mustafa, Altyeb Mohammed Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. (English) Zbl 1485.65111 Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020). MSC: 65M99 35R13 26E50 03E72 PDF BibTeX XML Cite \textit{M. Osman} et al., Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020; Zbl 1485.65111) Full Text: DOI
Abro, Kashif Ali; Khan, Ilyas; Sooppy Nisar, Kottakkaran Use of Atangana-Baleanu fractional derivative in helical flow of a circular pipe. (English) Zbl 1508.35055 Fractals 28, No. 8, Article ID 2040049, 12 p. (2020). MSC: 35Q35 35Q74 76A10 74D05 74M10 44A10 35A20 35B05 33E12 26A33 35R11 PDF BibTeX XML Cite \textit{K. A. Abro} et al., Fractals 28, No. 8, Article ID 2040049, 12 p. (2020; Zbl 1508.35055) Full Text: DOI
Gaikwad, Kishor R.; Naner, Yogesh U. Transient thermoelastic stress analysis of a thin circular plate due to uniform internal heat generation. (English) Zbl 1483.35251 J. Korean Soc. Ind. Appl. Math. 24, No. 3, 293-303 (2020). MSC: 35Q74 74F05 74K10 74B99 35B07 35G30 35K05 44A10 PDF BibTeX XML Cite \textit{K. R. Gaikwad} and \textit{Y. U. Naner}, J. Korean Soc. Ind. Appl. Math. 24, No. 3, 293--303 (2020; Zbl 1483.35251) Full Text: DOI
Paul, Kamalesh; Mukhopadhyay, B. On a fractional order generalized thermo-elastic diffusion theorem. (English) Zbl 1469.35230 Int. J. Adv. Appl. Math. Mech. 7, No. 4, 51-63 (2020). MSC: 35R11 35A02 74A15 74F05 80A19 PDF BibTeX XML Cite \textit{K. Paul} and \textit{B. Mukhopadhyay}, Int. J. Adv. Appl. Math. Mech. 7, No. 4, 51--63 (2020; Zbl 1469.35230) Full Text: Link
Kasumo, Christian On the approximate solutions of the Korteweg-de Vries and viscid Burgers equations. (English) Zbl 1471.65129 Int. J. Adv. Appl. Math. Mech. 8, No. 2, 64-73 (2020). MSC: 65M55 35Q53 PDF BibTeX XML Cite \textit{C. Kasumo}, Int. J. Adv. Appl. Math. Mech. 8, No. 2, 64--73 (2020; Zbl 1471.65129) Full Text: Link
Job, M.; Sabu, N. Lower dimensional approximation of eigenvalue problem for thin elastic shells with nonuniform thickness. (English) Zbl 1468.74034 Int. J. Adv. Appl. Math. Mech. 8, No. 1, 27-39 (2020). MSC: 74K25 74G10 35Q74 PDF BibTeX XML Cite \textit{M. Job} and \textit{N. Sabu}, Int. J. Adv. Appl. Math. Mech. 8, No. 1, 27--39 (2020; Zbl 1468.74034) Full Text: Link
Ghehsareh, Hadi Roohani; Zabetzadeh, Sayyed Mahmood A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition. (English) Zbl 1475.65104 Inverse Probl. Sci. Eng. 28, No. 12, 1773-1795 (2020). MSC: 65M32 65M60 65M70 65N30 65D12 60K50 35R30 26A33 35R11 PDF BibTeX XML Cite \textit{H. R. Ghehsareh} and \textit{S. M. Zabetzadeh}, Inverse Probl. Sci. Eng. 28, No. 12, 1773--1795 (2020; Zbl 1475.65104) Full Text: DOI
Chauhan, Swati; Arora, Rajan; Chauhan, Antim Lie symmetry reductions and wave solutions of coupled equal width wave equation. (English) Zbl 1465.35096 Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 159, 17 p. (2020). MSC: 35C07 35C10 35B06 PDF BibTeX XML Cite \textit{S. Chauhan} et al., Int. J. Appl. Comput. Math. 6, No. 6, Paper No. 159, 17 p. (2020; Zbl 1465.35096) Full Text: DOI
Shivanian, Elyas Pseudospectral meshless radial point Hermit interpolation versus pseudospectral meshless radial point interpolation. (English) Zbl 07336559 Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{E. Shivanian}, Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020; Zbl 07336559) Full Text: DOI
Özkan, Ozan; Kurt, Ali A new method for solving fractional partial differential equations. (English) Zbl 1451.35256 J. Anal. 28, No. 2, 489-502 (2020). Reviewer: S. L. Kalla (Ballwin) MSC: 35R11 44A10 35A22 35C10 PDF BibTeX XML Cite \textit{O. Özkan} and \textit{A. Kurt}, J. Anal. 28, No. 2, 489--502 (2020; Zbl 1451.35256) Full Text: DOI
Hilal, Nayrouz; Injrou, Sami; Karroum, Ramez Exponential finite difference methods for solving Newell-Whitehead-Segel equation. (English) Zbl 1442.65160 Arab. J. Math. 9, No. 2, 367-379 (2020). MSC: 65M06 65H10 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{N. Hilal} et al., Arab. J. Math. 9, No. 2, 367--379 (2020; Zbl 1442.65160) Full Text: DOI
Thabet, Hayman; Kendre, Subhash; Peters, James; Kaplan, Melike Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach. (English) Zbl 1449.93123 Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020). MSC: 93C20 93C10 35R11 35C07 PDF BibTeX XML Cite \textit{H. Thabet} et al., Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020; Zbl 1449.93123) Full Text: DOI
Ziane, Djelloul; Cherif, Mountassir Hamdi; Cattani, Carlo; Belghaba, Kacem Yang-Laplace decomposition method for nonlinear system of local fractional partial differential equations. (English) Zbl 07664268 Appl. Math. Nonlinear Sci. 4, No. 2, 489-502 (2019). MSC: 49K20 35R11 PDF BibTeX XML Cite \textit{D. Ziane} et al., Appl. Math. Nonlinear Sci. 4, No. 2, 489--502 (2019; Zbl 07664268) Full Text: DOI
Yépez-Martínez, H.; Gómez-Aguilar, J. F. Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. (English) Zbl 1505.35358 Waves Random Complex Media 29, No. 4, 678-693 (2019). MSC: 35R11 35Q53 PDF BibTeX XML Cite \textit{H. Yépez-Martínez} and \textit{J. F. Gómez-Aguilar}, Waves Random Complex Media 29, No. 4, 678--693 (2019; Zbl 1505.35358) Full Text: DOI
Kadkhoda, Nematollah; Jafari, Hossein An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. (English) Zbl 1487.35406 Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019). MSC: 35R11 26A33 35C05 PDF BibTeX XML Cite \textit{N. Kadkhoda} and \textit{H. Jafari}, Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019; Zbl 1487.35406) Full Text: DOI
Kumar, Sunil; Kumar, Amit; Momani, Shaher; Aldhaifallah, Mujahed; Nisar, Kottakkaran Sooppy Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. (English) Zbl 1487.65169 Adv. Difference Equ. 2019, Paper No. 413, 19 p. (2019). MSC: 65M99 35R11 65M22 PDF BibTeX XML Cite \textit{S. Kumar} et al., Adv. Difference Equ. 2019, Paper No. 413, 19 p. (2019; Zbl 1487.65169) Full Text: DOI
Thabet, Hayman; Kendre, Subhash; Peters, James Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. (English) Zbl 1484.35392 AIMS Math. 4, No. 4, 1203-1222 (2019). MSC: 35R11 35C07 35Q53 76B25 PDF BibTeX XML Cite \textit{H. Thabet} et al., AIMS Math. 4, No. 4, 1203--1222 (2019; Zbl 1484.35392) Full Text: DOI
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Hussain, Jobayer Optical soliton solutions to the \((2+1)\)-dimensional Chaffee-Infante equation and the dimensionless form of the Zakharov equation. (English) Zbl 1485.35331 Adv. Difference Equ. 2019, Paper No. 446, 18 p. (2019). MSC: 35Q51 35C05 35C08 35Q60 PDF BibTeX XML Cite \textit{M. A. Akbar} et al., Adv. Difference Equ. 2019, Paper No. 446, 18 p. (2019; Zbl 1485.35331) Full Text: DOI
Liang, Yanfeng; Greenhalgh, David Estimation of the expected number of cases of microcephaly in Brazil as a result of zika. (English) Zbl 1470.92313 Math. Biosci. Eng. 16, No. 6, 8217-8242 (2019). MSC: 92D30 34K60 35Q92 PDF BibTeX XML Cite \textit{Y. Liang} and \textit{D. Greenhalgh}, Math. Biosci. Eng. 16, No. 6, 8217--8242 (2019; Zbl 1470.92313) Full Text: DOI
Thabet, Hayman; Kendre, Subhash New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations. (English) Zbl 1472.65115 Int. J. Adv. Appl. Math. Mech. 6, No. 3, 1-13 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M99 65M22 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{H. Thabet} and \textit{S. Kendre}, Int. J. Adv. Appl. Math. Mech. 6, No. 3, 1--13 (2019; Zbl 1472.65115) Full Text: Link
Khalid, Nauman; Abbas, Muhammad; Iqbal, Muhammad Kashif; Baleanu, Dumitru A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms. (English) Zbl 1459.65198 Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019). MSC: 65M70 35R11 26A33 65M06 PDF BibTeX XML Cite \textit{N. Khalid} et al., Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019; Zbl 1459.65198) Full Text: DOI
Eladdad, E. E.; Tarif, E. A. On the coupling of the homotopy perturbation method and new integral transform for solving systems of partial differential equations. (English) Zbl 1435.65148 Adv. Math. Phys. 2019, Article ID 5658309, 7 p. (2019). MSC: 65M15 35A25 35B20 65R10 PDF BibTeX XML Cite \textit{E. E. Eladdad} and \textit{E. A. Tarif}, Adv. Math. Phys. 2019, Article ID 5658309, 7 p. (2019; Zbl 1435.65148) Full Text: DOI
Egonmwan, A. O.; Okuonghae, D. Mathematical analysis of a tuberculosis model with imperfect vaccine. (English) Zbl 1426.92040 Int. J. Biomath. 12, No. 7, Article ID 1950073, 30 p. (2019). MSC: 92C60 34D23 35Q92 34C23 PDF BibTeX XML Cite \textit{A. O. Egonmwan} and \textit{D. Okuonghae}, Int. J. Biomath. 12, No. 7, Article ID 1950073, 30 p. (2019; Zbl 1426.92040) Full Text: DOI
Maitama, Shehu; Zhao, Weidong Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. (English) Zbl 1463.65339 Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019). MSC: 65M99 26A33 35R11 68W30 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019; Zbl 1463.65339) Full Text: DOI
Kumar, Devendra; Singh, Jagdev; Purohit, Sunil Dutt; Swroop, Ram A hybrid analytical algorithm for nonlinear fractional wave-like equations. (English) Zbl 1423.65001 Math. Model. Nat. Phenom. 14, No. 3, Paper No. 304, 13 p. (2019). MSC: 65M99 35R11 35L05 PDF BibTeX XML Cite \textit{D. Kumar} et al., Math. Model. Nat. Phenom. 14, No. 3, Paper No. 304, 13 p. (2019; Zbl 1423.65001) Full Text: DOI
Soni, Poonam; Kumar, Arun; Rani, A. Laplace Adomian decomposition method to study chemical ion transport through soil. (English) Zbl 1416.35013 Appl. Appl. Math. 14, No. 1, 475-484 (2019). MSC: 35A22 35A25 35Q40 PDF BibTeX XML Cite \textit{P. Soni} et al., Appl. Appl. Math. 14, No. 1, 475--484 (2019; Zbl 1416.35013) Full Text: Link
Zhao, Jingjun; Zhan, Rui; Xu, Yang The analysis of operator splitting for the Gardner equation. (English) Zbl 1418.35084 Appl. Numer. Math. 144, 151-175 (2019). MSC: 35G31 35B40 PDF BibTeX XML Cite \textit{J. Zhao} et al., Appl. Numer. Math. 144, 151--175 (2019; Zbl 1418.35084) Full Text: DOI
Zhang, Jinliang; Wang, Mingliang Decay mode solution of nonlinear boundary-initial value problems for the cylindrical (spherical) Boussinesq-Burgers equations. (English) Zbl 1407.35033 Appl. Math. Lett. 89, 50-57 (2019). MSC: 35B40 35Q35 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{M. Wang}, Appl. Math. Lett. 89, 50--57 (2019; Zbl 1407.35033) Full Text: DOI
Krishnarajulu, Krishnaveni; Sevugan, Raja Balachandar; Gopalakrishnan, Venkatesh Sivaramakrishnan A new approach to space fractional differential equations based on fractional order Euler polynomials. (English) Zbl 1499.49067 Publ. Inst. Math., Nouv. Sér. 104(118), 157-168 (2018). MSC: 49K20 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{K. Krishnarajulu} et al., Publ. Inst. Math., Nouv. Sér. 104(118), 157--168 (2018; Zbl 1499.49067) Full Text: DOI
Porubov, A. V.; Bondarenkov, R. S.; Bouche, D.; Fradkov, A. L. Two-step shock waves propagation for isothermal Euler equations. (English) Zbl 1427.35191 Appl. Math. Comput. 332, 160-166 (2018). MSC: 35Q31 PDF BibTeX XML Cite \textit{A. V. Porubov} et al., Appl. Math. Comput. 332, 160--166 (2018; Zbl 1427.35191) Full Text: DOI
Cabanillas Lapa, Eugeniox; Barros, Juan Benito Bernui; de la Cruz Marcacuzco, Rocio Julieta; Segura, Zacarias Huaringa Existence of solutions for a class of \(p(x)\)-Kirchhoff type equation with dependence on the gradient. (English) Zbl 1422.35048 Kyungpook Math. J. 58, No. 3, 533-546 (2018). MSC: 35J60 35J92 35A01 PDF BibTeX XML Cite \textit{E. Cabanillas Lapa} et al., Kyungpook Math. J. 58, No. 3, 533--546 (2018; Zbl 1422.35048) Full Text: DOI
Yépez-Martínez, H.; Gómez-Aguilar, J. F.; Atangana, Abdon First integral method for non-linear differential equations with conformable derivative. (English) Zbl 1458.35463 Math. Model. Nat. Phenom. 13, No. 1, Paper No. 14, 22 p. (2018). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{H. Yépez-Martínez} et al., Math. Model. Nat. Phenom. 13, No. 1, Paper No. 14, 22 p. (2018; Zbl 1458.35463) Full Text: DOI
Aslefallah, Mohammad; Shivanian, Elyas An efficient meshless method based on RBFs for the time fractional diffusion-wave equation. (English) Zbl 1413.65319 Afr. Mat. 29, No. 7-8, 1203-1214 (2018). MSC: 65M06 65N12 26A33 35R11 65M70 41A15 PDF BibTeX XML Cite \textit{M. Aslefallah} and \textit{E. Shivanian}, Afr. Mat. 29, No. 7--8, 1203--1214 (2018; Zbl 1413.65319) Full Text: DOI
Wang, Xiaofeng; Dai, Weizhong A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau-Kawahara-RLW equation. (English) Zbl 1413.65407 Comput. Appl. Math. 37, No. 5, 6560-6581 (2018). MSC: 65N06 65M12 35C08 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Dai}, Comput. Appl. Math. 37, No. 5, 6560--6581 (2018; Zbl 1413.65407) Full Text: DOI
Modanlı, Mahmut Two numerical methods for fractional partial differential equation with nonlocal boundary value problem. (English) Zbl 1448.65114 Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018). MSC: 65M06 35R11 65M12 65R20 26A33 PDF BibTeX XML Cite \textit{M. Modanlı}, Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018; Zbl 1448.65114) Full Text: DOI
Wang, Xiaofeng; Dai, Weizhong A three-level linear implicit conservative scheme for the Rosenau-KdV-RLW equation. (English) Zbl 1376.65116 J. Comput. Appl. Math. 330, 295-306 (2018). MSC: 65M06 65M12 35L75 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Dai}, J. Comput. Appl. Math. 330, 295--306 (2018; Zbl 1376.65116) Full Text: DOI
Ak, Turgut; Dhawan, Sharanjeet; Karakoc, S. Battal Gazi; Bhowmik, Samir K.; Raslan, Kamal R. Numerical study of Rosenau-KdV equation using finite element method based on collocation approach. (English) Zbl 1488.35474 Math. Model. Anal. 22, No. 3, 373-388 (2017). MSC: 35Q53 76B15 76M10 65L60 41A15 PDF BibTeX XML Cite \textit{T. Ak} et al., Math. Model. Anal. 22, No. 3, 373--388 (2017; Zbl 1488.35474) Full Text: DOI
Dhakate, Tara; Varghese, Vinod; Khalsa, Lalsingh A Green’s function approach for the thermoelastic analysis of an elliptical cylinder. (English) Zbl 1427.35272 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 30-40 (2017). MSC: 35Q74 35C10 74F05 80A20 35K05 33E10 74B20 PDF BibTeX XML Cite \textit{T. Dhakate} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 2, 30--40 (2017; Zbl 1427.35272) Full Text: Link
Chatterjee, Avipsita; Basu, Uma; Mandal, B. N. Numerical algorithm based on Bernstein polynomials for solving nonlinear fractional diffusion-wave equation. (English) Zbl 1427.65283 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 9-15 (2017). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{A. Chatterjee} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 2, 9--15 (2017; Zbl 1427.65283) Full Text: Link
Mahmood, Bewar A.; Yousif, Majeed A. A residual power series technique for solving Boussinesq-Burgers equations. (English) Zbl 1438.35363 Cogent Math. 4, Article ID 1279398, 11 p. (2017). MSC: 35Q53 35C10 76B15 94A20 PDF BibTeX XML Cite \textit{B. A. Mahmood} and \textit{M. A. Yousif}, Cogent Math. 4, Article ID 1279398, 11 p. (2017; Zbl 1438.35363) Full Text: DOI
Tawfiq, Luma Naji Mohammed; Jabber, Alaa K. Solve the groundwater model equation using Fourier transforms method. (English) Zbl 1444.86003 Int. J. Adv. Appl. Math. Mech. 5, No. 1, 75-80 (2017). MSC: 86A05 35Q35 35A22 42B10 PDF BibTeX XML Cite \textit{L. N. M. Tawfiq} and \textit{A. K. Jabber}, Int. J. Adv. Appl. Math. Mech. 5, No. 1, 75--80 (2017; Zbl 1444.86003) Full Text: Link
Hassan, Ayman F.; Ismaila, Hassan N. A.; Elnaggar, Khalid M. A restrictive Padé approximation for the solution of RLW equation. (English) Zbl 1419.65021 Int. J. Adv. Appl. Math. Mech. 5, No. 1, 7-14 (2017). MSC: 65M06 35A35 35Q51 41A21 65D05 PDF BibTeX XML Cite \textit{A. F. Hassan} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 1, 7--14 (2017; Zbl 1419.65021) Full Text: Link
Mohammadi, Fakhrodin; Ciancio, Armando Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel. (English) Zbl 1412.47020 Wavel. Linear Algebra 4, No. 1, 53-73 (2017). MSC: 65R20 45K05 65T60 42C40 35R11 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{A. Ciancio}, Wavel. Linear Algebra 4, No. 1, 53--73 (2017; Zbl 1412.47020)
Jaradat, Husein M. Dynamic behavior of traveling wave solutions for new couplings of the Burgers equations with time-dependent variable coefficients. (English) Zbl 1422.35141 Adv. Difference Equ. 2017, Paper No. 167, 10 p. (2017). MSC: 35Q53 35C08 35Q51 37K40 PDF BibTeX XML Cite \textit{H. M. Jaradat}, Adv. Difference Equ. 2017, Paper No. 167, 10 p. (2017; Zbl 1422.35141) Full Text: DOI
Pirzada, U. M.; Vakaskar, D. C. Solution of fuzzy heat equation under fuzzified thermal diffusivity. (English) Zbl 1396.35023 Manchanda, Pammy (ed.) et al., Industrial mathematics and complex systems. Emerging mathematical models, methods and algorithms. Based on the presentations at the international conference, Greater Noida, India, January 29–31, 2016. Singapore: Springer (ISBN 978-981-10-3757-3/hbk; 978-981-10-3758-0/ebook). Industrial and Applied Mathematics, 271-281 (2017). MSC: 35K05 PDF BibTeX XML Cite \textit{U. M. Pirzada} and \textit{D. C. Vakaskar}, in: Industrial mathematics and complex systems. Emerging mathematical models, methods and algorithms. Based on the presentations at the international conference, Greater Noida, India, January 29--31, 2016. Singapore: Springer. 271--281 (2017; Zbl 1396.35023) Full Text: DOI
Yan, Zuomao; Lu, Fangxia Complete controllability of fractional impulsive multivalued stochastic partial integrodifferential equations with state-dependent delay. (English) Zbl 1401.93040 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 3-4, 197-220 (2017). MSC: 93B05 34A08 34K30 34K45 35R60 60H15 93C25 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{F. Lu}, Int. J. Nonlinear Sci. Numer. Simul. 18, No. 3--4, 197--220 (2017; Zbl 1401.93040) Full Text: DOI
Raslan, K. R.; El-Danaf, Talaat S.; Ali, Khalid K. New exact solutions of coupled generalized regularized long wave equations. (English) Zbl 1398.35205 J. Egypt. Math. Soc. 25, No. 4, 400-405 (2017). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Egypt. Math. Soc. 25, No. 4, 400--405 (2017; Zbl 1398.35205) Full Text: DOI
Raslan, K. R.; EL-Danaf, Talaat S.; Ali, Khalid K. New exact solution of coupled general equal width wave equation using sine-cosine function method. (English) Zbl 1377.35052 J. Egypt. Math. Soc. 25, No. 3, 350-354 (2017). MSC: 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Egypt. Math. Soc. 25, No. 3, 350--354 (2017; Zbl 1377.35052) Full Text: DOI
Shivanian, Elyas Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis. (English) Zbl 1370.65041 Numer. Methods Partial Differ. Equations 33, No. 3, 974-994 (2017). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 35K57 35R11 65M70 65M15 65M12 PDF BibTeX XML Cite \textit{E. Shivanian}, Numer. Methods Partial Differ. Equations 33, No. 3, 974--994 (2017; Zbl 1370.65041) Full Text: DOI
Shivanian, Elyas; Jafarabadi, Ahmad An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. (English) Zbl 1417.65180 J. Comput. Appl. Math. 325, 18-33 (2017). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, J. Comput. Appl. Math. 325, 18--33 (2017; Zbl 1417.65180) Full Text: DOI
Goswami, Pranay; Alqahtani, Rubayyi T. On the solution of local fractional differential equations using local fractional Laplace variational iteration method. (English) Zbl 1400.35063 Math. Probl. Eng. 2016, Article ID 9672314, 6 p. (2016). MSC: 35C08 35R11 PDF BibTeX XML Cite \textit{P. Goswami} and \textit{R. T. Alqahtani}, Math. Probl. Eng. 2016, Article ID 9672314, 6 p. (2016; Zbl 1400.35063) Full Text: DOI
Jassim, Hassan Kamil The approximate solutions of three-dimensional diffusion and wave equations within local fractional derivative operator. (English) Zbl 1470.35395 Abstr. Appl. Anal. 2016, Article ID 2913539, 5 p. (2016). MSC: 35R11 PDF BibTeX XML Cite \textit{H. K. Jassim}, Abstr. Appl. Anal. 2016, Article ID 2913539, 5 p. (2016; Zbl 1470.35395) Full Text: DOI