Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Chu, Yu-Ming; Ullah, Saif; Ali, Muzaher; Tuzzahrah, Ghulam Fatima; Munir, Taj Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. (English) Zbl 1510.65325 Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022; Zbl 1510.65325) Full Text: DOI
Altürk, Ahmet; Coşgun, Tahir The use of Lavrentiev regularization method in Fredholm integral equations of the first kind. (English) Zbl 1469.45001 Int. J. Adv. Appl. Math. Mech. 7, No. 2, 70-79 (2019). MSC: 45B05 PDF BibTeX XML Cite \textit{A. Altürk} and \textit{T. Coşgun}, Int. J. Adv. Appl. Math. Mech. 7, No. 2, 70--79 (2019; Zbl 1469.45001) Full Text: Link
Bani issa, Mohammed Sh.; Hamoud, Ahmed A.; Giniswamy; Ghadle, Kirtiwant P. Solving nonlinear Volterra integral equations by using numerical techniques. (English) Zbl 1465.65167 Int. J. Adv. Appl. Math. Mech. 6, No. 4, 50-54 (2019). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Sh. Bani issa} et al., Int. J. Adv. Appl. Math. Mech. 6, No. 4, 50--54 (2019; Zbl 1465.65167) Full Text: Link
Aissani, Khalida; Benchohra, Mouffak; Benkhettou, Nadia On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. (English) Zbl 1446.34093 Cubo 21, No. 1, 61-75 (2019). MSC: 34K30 34K37 34K45 45J99 47N20 PDF BibTeX XML Cite \textit{K. Aissani} et al., Cubo 21, No. 1, 61--75 (2019; Zbl 1446.34093) Full Text: DOI
Fernane, Khaireddine Analytical solution of linear integro-differential equations with weakly singular kernel by using Taylor expansion method. (English) Zbl 1497.45010 J. Nonlinear Evol. Equ. Appl. 2018, 27-37 (2018). MSC: 45J05 45A05 45E10 45G10 65R20 PDF BibTeX XML Cite \textit{K. Fernane}, J. Nonlinear Evol. Equ. Appl. 2018, 27--37 (2018; Zbl 1497.45010) Full Text: Link
Mohammadi, Fakhrodin An efficient fractional-order wavelet method for fractional Volterra integro-differential equations. (English) Zbl 1499.65285 Int. J. Comput. Math. 95, No. 12, 2396-2418 (2018). MSC: 65L05 26A33 34K37 45J05 65T60 PDF BibTeX XML Cite \textit{F. Mohammadi}, Int. J. Comput. Math. 95, No. 12, 2396--2418 (2018; Zbl 1499.65285) Full Text: DOI
Wang, Jiao; Xu, Tian-Zhou; Wei, Yan-Qiao; Xie, Jia-Quan Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method. (English) Zbl 1426.65119 Appl. Math. Comput. 324, 36-50 (2018). MSC: 65L60 65R20 34K37 34A08 45J05 65L20 65T60 PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Comput. 324, 36--50 (2018; Zbl 1426.65119) Full Text: DOI
Mohammadi, Fakhrodin; Ciancio, Armando Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel. (English) Zbl 1412.47020 Wavel. Linear Algebra 4, No. 1, 53-73 (2017). MSC: 65R20 45K05 65T60 42C40 35R11 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{A. Ciancio}, Wavel. Linear Algebra 4, No. 1, 53--73 (2017; Zbl 1412.47020)
Mohammadi, Fakhrodin Second kind Chebyshev wavelet Galerkin method for stochastic Itô-Volterra integral equations. (English) Zbl 1359.65015 Mediterr. J. Math. 13, No. 5, 2613-2631 (2016). Reviewer: Melvin D. Lax (Long Beach) MSC: 65C30 65T60 60H20 60H35 45R05 PDF BibTeX XML Cite \textit{F. Mohammadi}, Mediterr. J. Math. 13, No. 5, 2613--2631 (2016; Zbl 1359.65015) Full Text: DOI
Gautam, Ganga Ram; Dabas, Jaydev Existence of mild solutions for impulsive fractional functional integro-differential equations. (English) Zbl 1415.34122 Fract. Differ. Calc. 5, No. 1, 65-77 (2015). MSC: 34K37 34K45 34A37 45J05 PDF BibTeX XML Cite \textit{G. R. Gautam} and \textit{J. Dabas}, Fract. Differ. Calc. 5, No. 1, 65--77 (2015; Zbl 1415.34122) Full Text: DOI
Suganya, Selvaraj; Baleanu, Dumitru; Kalamani, Palaniyappan; Mallika Arjunan, Mani On fractional neutral integro-differential systems with state-dependent delay and non-instantaneous impulses. (English) Zbl 1422.34224 Adv. Difference Equ. 2015, Paper No. 372, 39 p. (2015). MSC: 34K37 34K45 45J05 PDF BibTeX XML Cite \textit{S. Suganya} et al., Adv. Difference Equ. 2015, Paper No. 372, 39 p. (2015; Zbl 1422.34224) Full Text: DOI