Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Pan, Xintian; Zhang, Luming A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation. (English) Zbl 1515.65269 Demonstr. Math. 56, Article ID 20220204, 13 p. (2023). MSC: 65N06 65M06 65N12 35C08 47H10 35Q51 35Q53 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Demonstr. Math. 56, Article ID 20220204, 13 p. (2023; Zbl 1515.65269) Full Text: DOI
Cosgun, Tahir; Sari, Murat A novel approach regarding the fixed points of repelling nature. (English) Zbl 1498.37043 Chaos Solitons Fractals 153, Part 1, Article ID 111573, 11 p. (2021). MSC: 37C70 37C25 47H10 PDF BibTeX XML Cite \textit{T. Cosgun} and \textit{M. Sari}, Chaos Solitons Fractals 153, Part 1, Article ID 111573, 11 p. (2021; Zbl 1498.37043) Full Text: DOI
Saravanakumar, Subramaniam; Balasubramaniam, Pagavathigounder Approximate controllability of nonlinear hilfer fractional stochastic differential system with Rosenblatt process and Poisson jumps. (English) Zbl 07446866 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7-8, 727-737 (2020). MSC: 93B05 34A08 60H10 47H10 PDF BibTeX XML Cite \textit{S. Saravanakumar} and \textit{P. Balasubramaniam}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7--8, 727--737 (2020; Zbl 07446866) Full Text: DOI
Aissani, Khalida; Benchohra, Mouffak; Benkhettou, Nadia On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. (English) Zbl 1446.34093 Cubo 21, No. 1, 61-75 (2019). MSC: 34K30 34K37 34K45 45J99 47N20 PDF BibTeX XML Cite \textit{K. Aissani} et al., Cubo 21, No. 1, 61--75 (2019; Zbl 1446.34093) Full Text: DOI
Singhal, Sandeep; Uduman, Pattani Samsudeen Sehik Uniqueness of solution for impulsive fractional functional differential equation. (English) Zbl 1398.34115 Commun. Korean Math. Soc. 33, No. 1, 171-177 (2018). MSC: 34K37 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{S. Singhal} and \textit{P. S. S. Uduman}, Commun. Korean Math. Soc. 33, No. 1, 171--177 (2018; Zbl 1398.34115) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Existence results for class of fractional order boundary value problems with integrable impulses. (English) Zbl 1397.34135 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 267-285 (2018). MSC: 34K37 34K45 34K10 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 267--285 (2018; Zbl 1397.34135) Full Text: Link
Gautam, Ganga Ram; Dabas, Jaydev Existence of mild solutions for impulsive fractional functional differential equations of order \(\alpha \in (1, 2)\). (English) Zbl 1360.34162 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, May 18–22, 2015. Selected contributions. Cham: Springer (ISBN 978-3-319-32855-3/hbk; 978-3-319-32857-7/ebook). Springer Proceedings in Mathematics & Statistics 164, 141-148 (2016). MSC: 34K37 34K05 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{G. R. Gautam} and \textit{J. Dabas}, Springer Proc. Math. Stat. 164, 141--148 (2016; Zbl 1360.34162) Full Text: DOI
Gupta, Animesh Ulam-Hyers stability theorem by tripled fixed point theorem. (English) Zbl 1352.15019 Fasc. Math. 56, 77-97 (2016). MSC: 15A24 15A29 47H10 54H25 PDF BibTeX XML Cite \textit{A. Gupta}, Fasc. Math. 56, 77--97 (2016; Zbl 1352.15019) Full Text: DOI