Pan, Xintian; Zhang, Luming A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation. (English) Zbl 07690111 Demonstr. Math. 56, Article ID 20220204, 13 p. (2023). MSC: 65N06 65M06 65N12 35C08 47H10 35Q51 35Q53 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhang}, Demonstr. Math. 56, Article ID 20220204, 13 p. (2023; Zbl 07690111) Full Text: DOI OpenURL
Singh, Inderdeep; Kaur, Manbir 2D-wavelets based efficient scheme for solving some PDEs. (English) Zbl 07634975 Adv. Differ. Equ. Control Process. 29, 27-45 (2022). MSC: 65N35 65T60 PDF BibTeX XML Cite \textit{I. Singh} and \textit{M. Kaur}, Adv. Differ. Equ. Control Process. 29, 27--45 (2022; Zbl 07634975) Full Text: DOI OpenURL
Karaman, Bahar The global stability investigation of the mathematical design of a fractional-order HBV infection. (English) Zbl 07632369 J. Appl. Math. Comput. 68, No. 6, 4759-4775 (2022). MSC: 65Lxx 34C60 34A08 92D30 PDF BibTeX XML Cite \textit{B. Karaman}, J. Appl. Math. Comput. 68, No. 6, 4759--4775 (2022; Zbl 07632369) Full Text: DOI OpenURL
Tiwari, Diksha; Verma, Amit K.; Cattani, Carlo Wavelet solution of a strongly nonlinear Lane-Emden equation. (English) Zbl 07601308 J. Math. Chem. 60, No. 10, 2054-2080 (2022). MSC: 65T60 34B16 PDF BibTeX XML Cite \textit{D. Tiwari} et al., J. Math. Chem. 60, No. 10, 2054--2080 (2022; Zbl 07601308) Full Text: DOI OpenURL
Salhi, Loubna; Seaid, Mohammed; Yakoubi, Driss Well-posedness and numerical approximation of steady convection-diffusion-reaction problems in porous media. (English) Zbl 07595301 Comput. Math. Appl. 124, 129-148 (2022). MSC: 76S05 65N30 80A20 76V05 35Q35 PDF BibTeX XML Cite \textit{L. Salhi} et al., Comput. Math. Appl. 124, 129--148 (2022; Zbl 07595301) Full Text: DOI OpenURL
Rouatbi, Asma; Ghiloufi, Ahlem; Omrani, Khaled An efficient tool for solving the Rosenau-Burgers equation in two dimensions. (English) Zbl 07562953 Comput. Appl. Math. 41, No. 5, Paper No. 210, 23 p. (2022). MSC: 65M06 65N06 65M12 65M15 76B15 35Q35 35Q53 PDF BibTeX XML Cite \textit{A. Rouatbi} et al., Comput. Appl. Math. 41, No. 5, Paper No. 210, 23 p. (2022; Zbl 07562953) Full Text: DOI OpenURL
Kumar, Kamlesh; Kumar, Jogendra; Pandey, Rajesh K. A fully finite difference scheme for time-fractional telegraph equation involving Atangana Baleanu Caputo fractional derivative. (English) Zbl 07549894 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022). MSC: 65Mxx 39-XX PDF BibTeX XML Cite \textit{K. Kumar} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 154, 12 p. (2022; Zbl 07549894) Full Text: DOI OpenURL
Chu, Yu-Ming; Ullah, Saif; Ali, Muzaher; Tuzzahrah, Ghulam Fatima; Munir, Taj Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. (English) Zbl 07545344 Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022; Zbl 07545344) Full Text: DOI OpenURL
Gao, Yuyan; Sun, Zhengjie Multi-symplectic quasi-interpolation method for the KdV equation. (English) Zbl 1499.41003 Comput. Appl. Math. 41, No. 3, Paper No. 112, 17 p. (2022). MSC: 41A05 41A25 65D15 65N40 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{Z. Sun}, Comput. Appl. Math. 41, No. 3, Paper No. 112, 17 p. (2022; Zbl 1499.41003) Full Text: DOI OpenURL
Dubey, Ved Prakash; Singh, Jagdev; Alshehri, Ahmed M.; Dubey, Sarvesh; Kumar, Devendra An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations. (English) Zbl 07487731 Math. Comput. Simul. 196, 296-318 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Math. Comput. Simul. 196, 296--318 (2022; Zbl 07487731) Full Text: DOI OpenURL
Salhi, Loubna; El-Amrani, Mofdi; Seaid, Mohammed A Galerkin-characteristic unified finite element method for moving thermal fronts in porous media. (English) Zbl 07444598 J. Comput. Appl. Math. 404, Article ID 113159, 27 p. (2022). MSC: 76M10 76D05 65N30 76S05 65M12 PDF BibTeX XML Cite \textit{L. Salhi} et al., J. Comput. Appl. Math. 404, Article ID 113159, 27 p. (2022; Zbl 07444598) Full Text: DOI OpenURL
Osman, Mawia; Gong, Zengtai; Mustafa, Altyeb Mohammed; Yang, Hong Solving fuzzy \((1+ n)\)-dimensional Burgers’ equation. (English) Zbl 1494.35176 Adv. Difference Equ. 2021, Paper No. 219, 51 p. (2021). MSC: 35R13 65M55 PDF BibTeX XML Cite \textit{M. Osman} et al., Adv. Difference Equ. 2021, Paper No. 219, 51 p. (2021; Zbl 1494.35176) Full Text: DOI OpenURL
Usman, Muhammad; Hamid, Muhammad; Liu, Moubin Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions. (English) Zbl 1498.65177 Chaos Solitons Fractals 144, Article ID 110701, 20 p. (2021). MSC: 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{M. Usman} et al., Chaos Solitons Fractals 144, Article ID 110701, 20 p. (2021; Zbl 1498.65177) Full Text: DOI OpenURL
Shivanian, Elyas; Jafarabadi, Ahmad Numerical investigation based on a local meshless radial point interpolation for solving coupled nonlinear reaction-diffusion system. (English) Zbl 1499.65579 Comput. Methods Differ. Equ. 9, No. 2, 358-374 (2021). MSC: 65M70 65M06 65N35 65D12 65D07 92E20 92C15 35Q92 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, Comput. Methods Differ. Equ. 9, No. 2, 358--374 (2021; Zbl 1499.65579) Full Text: DOI OpenURL
Jafari, Hossein; Jassim, Hassan Kamil; Baleanu, Dumitru; Chu, Yu-Ming On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative. (English) Zbl 07465612 Fractals 29, No. 5, Article ID 2140012, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 29, No. 5, Article ID 2140012, 7 p. (2021; Zbl 07465612) Full Text: DOI OpenURL
Iqbal, Naveed; Yasmin, Humaira; Ali, Akbar; Bariq, Abdul; Al-Sawalha, M. Mossa; Mohammed, Wael W. Numerical methods for fractional-order Fornberg-Whitham equations in the sense of Atangana-Baleanu derivative. (English) Zbl 07452481 J. Funct. Spaces 2021, Article ID 2197247, 10 p. (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{N. Iqbal} et al., J. Funct. Spaces 2021, Article ID 2197247, 10 p. (2021; Zbl 07452481) Full Text: DOI OpenURL
Jafari, Raheleh; Yu, Wen; Razvarz, Sina; Gegov, Alexander Numerical methods for solving fuzzy equations: a survey. (English) Zbl 1464.65049 Fuzzy Sets Syst. 404, 1-22 (2021). MSC: 65H99 26E50 PDF BibTeX XML Cite \textit{R. Jafari} et al., Fuzzy Sets Syst. 404, 1--22 (2021; Zbl 1464.65049) Full Text: DOI Link OpenURL
Wang, Xiaofeng; Dai, Weizhong; Usman, Muhammad A high-order accurate finite difference scheme for the KdV equation with time-periodic boundary forcing. (English) Zbl 1459.76094 Appl. Numer. Math. 160, 102-121 (2021). MSC: 76M20 76B15 65M12 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Numer. Math. 160, 102--121 (2021; Zbl 1459.76094) Full Text: DOI OpenURL
Lobato, F. S.; Lima, W. J.; Borges, R. A.; Cavalini, A. Ap. jun.; Steffen, V. jun. The solution of direct and inverse fractional advection-dispersion problems by using orthogonal collocation and differential evolution. (English) Zbl 07558594 Soft Comput. 24, No. 14, 10389-10399 (2020). MSC: 65-XX 35R11 PDF BibTeX XML Cite \textit{F. S. Lobato} et al., Soft Comput. 24, No. 14, 10389--10399 (2020; Zbl 07558594) Full Text: DOI OpenURL
Ji, Tianfu; Hou, Jianhua; Yang, Changqing Numerical solution of the Bagley-Torvik equation using shifted Chebyshev operational matrix. (English) Zbl 1487.65103 Adv. Difference Equ. 2020, Paper No. 648, 14 p. (2020). MSC: 65L60 34A08 65L70 PDF BibTeX XML Cite \textit{T. Ji} et al., Adv. Difference Equ. 2020, Paper No. 648, 14 p. (2020; Zbl 1487.65103) Full Text: DOI OpenURL
Osman, Mawia; Gong, Zengtai; Mustafa, Altyeb Mohammed Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. (English) Zbl 1485.65111 Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020). MSC: 65M99 35R13 26E50 03E72 PDF BibTeX XML Cite \textit{M. Osman} et al., Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020; Zbl 1485.65111) Full Text: DOI OpenURL
Hepson, Ozlem Ersoy; Korkmaz, Alper; Dag, Idris Exponential B-spline collocation solutions to the Gardner equation. (English) Zbl 1495.41002 Int. J. Comput. Math. 97, No. 4, 837-850 (2020). MSC: 41A15 65M60 74J35 PDF BibTeX XML Cite \textit{O. E. Hepson} et al., Int. J. Comput. Math. 97, No. 4, 837--850 (2020; Zbl 1495.41002) Full Text: DOI arXiv OpenURL
Kasumo, Christian On the approximate solutions of the Korteweg-de Vries and viscid Burgers equations. (English) Zbl 1471.65129 Int. J. Adv. Appl. Math. Mech. 8, No. 2, 64-73 (2020). MSC: 65M55 35Q53 PDF BibTeX XML Cite \textit{C. Kasumo}, Int. J. Adv. Appl. Math. Mech. 8, No. 2, 64--73 (2020; Zbl 1471.65129) Full Text: Link OpenURL
Ghehsareh, Hadi Roohani; Zabetzadeh, Sayyed Mahmood A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition. (English) Zbl 1475.65104 Inverse Probl. Sci. Eng. 28, No. 12, 1773-1795 (2020). MSC: 65M32 65M60 65M70 65N30 65D12 60K50 35R30 26A33 35R11 PDF BibTeX XML Cite \textit{H. R. Ghehsareh} and \textit{S. M. Zabetzadeh}, Inverse Probl. Sci. Eng. 28, No. 12, 1773--1795 (2020; Zbl 1475.65104) Full Text: DOI OpenURL
Shivanian, Elyas Pseudospectral meshless radial point Hermit interpolation versus pseudospectral meshless radial point interpolation. (English) Zbl 07336559 Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{E. Shivanian}, Int. J. Comput. Methods 17, No. 7, Article ID 1950023, 28 p. (2020; Zbl 07336559) Full Text: DOI OpenURL
Hilal, Nayrouz; Injrou, Sami; Karroum, Ramez Exponential finite difference methods for solving Newell-Whitehead-Segel equation. (English) Zbl 1442.65160 Arab. J. Math. 9, No. 2, 367-379 (2020). MSC: 65M06 65H10 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{N. Hilal} et al., Arab. J. Math. 9, No. 2, 367--379 (2020; Zbl 1442.65160) Full Text: DOI OpenURL
Burgos, C.; Cortés, J.-C.; Villafuerte, L.; Villanueva, R.-J. Mean square convergent numerical solutions of random fractional differential equations: approximations of moments and density. (English) Zbl 1503.65009 J. Comput. Appl. Math. 378, Article ID 112925, 13 p. (2020). MSC: 65C30 34A08 60H10 60H25 65L05 PDF BibTeX XML Cite \textit{C. Burgos} et al., J. Comput. Appl. Math. 378, Article ID 112925, 13 p. (2020; Zbl 1503.65009) Full Text: DOI Link OpenURL
Melesse, Wondwosen Gebeyaw; Tiruneh, Awoke Andargie; Derese, Getachew Adamu Solving systems of singularly perturbed convection diffusion problems via initial value method. (English) Zbl 1442.65137 J. Appl. Math. 2020, Article ID 1062025, 8 p. (2020). MSC: 65L11 65L05 65L70 PDF BibTeX XML Cite \textit{W. G. Melesse} et al., J. Appl. Math. 2020, Article ID 1062025, 8 p. (2020; Zbl 1442.65137) Full Text: DOI OpenURL
Kumar, Sunil; Kumar, Amit; Momani, Shaher; Aldhaifallah, Mujahed; Nisar, Kottakkaran Sooppy Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. (English) Zbl 1487.65169 Adv. Difference Equ. 2019, Paper No. 413, 19 p. (2019). MSC: 65M99 35R11 65M22 PDF BibTeX XML Cite \textit{S. Kumar} et al., Adv. Difference Equ. 2019, Paper No. 413, 19 p. (2019; Zbl 1487.65169) Full Text: DOI OpenURL
Sobamowo, G. M.; Adeleye, O. A.; Yinusa, A. A. Heat transfer and flow analysis of magnetohydrodynamic dissipative Carreau nanofluid over a stretching sheet with internal heat generation. (English) Zbl 1499.65303 J. Comput. Eng. Math. 6, No. 1, 3-26 (2019). MSC: 65L06 80A32 PDF BibTeX XML Cite \textit{G. M. Sobamowo} et al., J. Comput. Eng. Math. 6, No. 1, 3--26 (2019; Zbl 1499.65303) Full Text: DOI MNR OpenURL
Li, Ming; Li, Jingzhi; Martin, Ralph; Zhang, Kai A numerical framework to simplify CAD models for reliable estimates of physical quantities. (English) Zbl 1488.65639 Adv. Appl. Math. Mech. 11, No. 4, 870-889 (2019). MSC: 65N30 65D17 PDF BibTeX XML Cite \textit{M. Li} et al., Adv. Appl. Math. Mech. 11, No. 4, 870--889 (2019; Zbl 1488.65639) Full Text: DOI OpenURL
Thabet, Hayman; Kendre, Subhash New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations. (English) Zbl 1472.65115 Int. J. Adv. Appl. Math. Mech. 6, No. 3, 1-13 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65M99 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{H. Thabet} and \textit{S. Kendre}, Int. J. Adv. Appl. Math. Mech. 6, No. 3, 1--13 (2019; Zbl 1472.65115) Full Text: Link OpenURL
Jassim, Hassan Kamil; Mohammed, Mayada Gassab; Khafif, Saad Abdul Hussain The approximate solutions of time-fractional Burger’s and coupled time-fractional Burger’s equations. (English) Zbl 1465.65112 Int. J. Adv. Appl. Math. Mech. 6, No. 4, 64-70 (2019). MSC: 65M99 PDF BibTeX XML Cite \textit{H. K. Jassim} et al., Int. J. Adv. Appl. Math. Mech. 6, No. 4, 64--70 (2019; Zbl 1465.65112) Full Text: Link OpenURL
Bani issa, Mohammed Sh.; Hamoud, Ahmed A.; Giniswamy; Ghadle, Kirtiwant P. Solving nonlinear Volterra integral equations by using numerical techniques. (English) Zbl 1465.65167 Int. J. Adv. Appl. Math. Mech. 6, No. 4, 50-54 (2019). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Sh. Bani issa} et al., Int. J. Adv. Appl. Math. Mech. 6, No. 4, 50--54 (2019; Zbl 1465.65167) Full Text: Link OpenURL
Khalid, Nauman; Abbas, Muhammad; Iqbal, Muhammad Kashif; Baleanu, Dumitru A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms. (English) Zbl 1459.65198 Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019). MSC: 65M70 35R11 26A33 65M06 PDF BibTeX XML Cite \textit{N. Khalid} et al., Adv. Difference Equ. 2019, Paper No. 378, 19 p. (2019; Zbl 1459.65198) Full Text: DOI OpenURL
Eladdad, E. E.; Tarif, E. A. On the coupling of the homotopy perturbation method and new integral transform for solving systems of partial differential equations. (English) Zbl 1435.65148 Adv. Math. Phys. 2019, Article ID 5658309, 7 p. (2019). MSC: 65M15 35A25 35B20 65R10 PDF BibTeX XML Cite \textit{E. E. Eladdad} and \textit{E. A. Tarif}, Adv. Math. Phys. 2019, Article ID 5658309, 7 p. (2019; Zbl 1435.65148) Full Text: DOI OpenURL
Awwal, Aliyu Muhammed; Kumam, Poom; Bala Abubakar, Auwal Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations. (English) Zbl 1433.65109 Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019). MSC: 65K05 90C06 90C56 65H10 90C30 90C53 65K10 PDF BibTeX XML Cite \textit{A. M. Awwal} et al., Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019; Zbl 1433.65109) Full Text: DOI OpenURL
Caraballo, Tomás; Cortés, J.-C.; Navarro-Quiles, A. Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. (English) Zbl 1428.34123 Appl. Math. Comput. 356, 198-218 (2019). MSC: 34K50 34K06 60H25 65C30 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Appl. Math. Comput. 356, 198--218 (2019; Zbl 1428.34123) Full Text: DOI Link OpenURL
Maitama, Shehu; Zhao, Weidong Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. (English) Zbl 1463.65339 Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019). MSC: 65M99 26A33 35R11 68W30 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 38, No. 2, Paper No. 65, 22 p. (2019; Zbl 1463.65339) Full Text: DOI OpenURL
Kumar, Devendra; Singh, Jagdev; Purohit, Sunil Dutt; Swroop, Ram A hybrid analytical algorithm for nonlinear fractional wave-like equations. (English) Zbl 1423.65001 Math. Model. Nat. Phenom. 14, No. 3, Paper No. 304, 13 p. (2019). MSC: 65M99 35R11 35L05 PDF BibTeX XML Cite \textit{D. Kumar} et al., Math. Model. Nat. Phenom. 14, No. 3, Paper No. 304, 13 p. (2019; Zbl 1423.65001) Full Text: DOI OpenURL
Burgos, Clara; Cortés, Juan-Carlos; Lombana, Iván-Camilo; Martínez-Rodríguez, David; Villanueva, Rafael-J. Modeling the dynamics of the frequent users of electronic commerce in Spain using optimization techniques for inverse problems with uncertainty. (English) Zbl 07093344 J. Optim. Theory Appl. 182, No. 2, 785-796 (2019). MSC: 65C20 65C60 65K10 PDF BibTeX XML Cite \textit{C. Burgos} et al., J. Optim. Theory Appl. 182, No. 2, 785--796 (2019; Zbl 07093344) Full Text: DOI Link OpenURL
Wang, Xiaofeng; Dai, Weizhong A conservative fourth-order stable finite difference scheme for the generalized Rosenau-KdV equation in both 1D and 2D. (English) Zbl 1432.65127 J. Comput. Appl. Math. 355, 310-331 (2019). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Dai}, J. Comput. Appl. Math. 355, 310--331 (2019; Zbl 1432.65127) Full Text: DOI OpenURL
Maitama, Shehu; Zhao, Weidong Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. (English) Zbl 1459.34033 Adv. Difference Equ. 2019, Paper No. 127, 22 p. (2019). MSC: 34A08 65H20 26A33 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Adv. Difference Equ. 2019, Paper No. 127, 22 p. (2019; Zbl 1459.34033) Full Text: DOI OpenURL
Fernane, Khaireddine Analytical solution of linear integro-differential equations with weakly singular kernel by using Taylor expansion method. (English) Zbl 1497.45010 J. Nonlinear Evol. Equ. Appl. 2018, 27-37 (2018). MSC: 45J05 45A05 45E10 45G10 65R20 PDF BibTeX XML Cite \textit{K. Fernane}, J. Nonlinear Evol. Equ. Appl. 2018, 27--37 (2018; Zbl 1497.45010) Full Text: Link OpenURL
Mohammadi, Fakhrodin An efficient fractional-order wavelet method for fractional Volterra integro-differential equations. (English) Zbl 1499.65285 Int. J. Comput. Math. 95, No. 12, 2396-2418 (2018). MSC: 65L05 26A33 34K37 45J05 65T60 PDF BibTeX XML Cite \textit{F. Mohammadi}, Int. J. Comput. Math. 95, No. 12, 2396--2418 (2018; Zbl 1499.65285) Full Text: DOI OpenURL
Chatterjee, Avipsita; Basu, Uma; Mandal, B. N. Numerical algorithm based on Bernstein polynomials for solving boundary value problems involving singular, singularly perturbed type differential equations. (English) Zbl 1465.65060 Int. J. Adv. Appl. Math. Mech. 5, No. 3, 1-14 (2018). MSC: 65L10 34B05 34B15 65L11 65L60 PDF BibTeX XML Cite \textit{A. Chatterjee} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 3, 1--14 (2018; Zbl 1465.65060) Full Text: Link OpenURL
Wang, Jiao; Xu, Tian-Zhou; Wei, Yan-Qiao; Xie, Jia-Quan Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method. (English) Zbl 1426.65119 Appl. Math. Comput. 324, 36-50 (2018). MSC: 65L60 65R20 34K37 34A08 45J05 65L20 65T60 PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Comput. 324, 36--50 (2018; Zbl 1426.65119) Full Text: DOI OpenURL
Aslefallah, Mohammad; Shivanian, Elyas An efficient meshless method based on RBFs for the time fractional diffusion-wave equation. (English) Zbl 1413.65319 Afr. Mat. 29, No. 7-8, 1203-1214 (2018). MSC: 65M06 65N12 26A33 35R11 65M70 41A15 PDF BibTeX XML Cite \textit{M. Aslefallah} and \textit{E. Shivanian}, Afr. Mat. 29, No. 7--8, 1203--1214 (2018; Zbl 1413.65319) Full Text: DOI OpenURL
Wang, Xiaofeng; Dai, Weizhong A new implicit energy conservative difference scheme with fourth-order accuracy for the generalized Rosenau-Kawahara-RLW equation. (English) Zbl 1413.65407 Comput. Appl. Math. 37, No. 5, 6560-6581 (2018). MSC: 65N06 65M12 35C08 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Dai}, Comput. Appl. Math. 37, No. 5, 6560--6581 (2018; Zbl 1413.65407) Full Text: DOI OpenURL
Modanlı, Mahmut Two numerical methods for fractional partial differential equation with nonlocal boundary value problem. (English) Zbl 1448.65114 Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018). MSC: 65M06 35R11 65M12 65R20 26A33 PDF BibTeX XML Cite \textit{M. Modanlı}, Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018; Zbl 1448.65114) Full Text: DOI OpenURL
Secer, Aydin; Altun, Selvi A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets. (English) Zbl 1417.65146 Mathematics 6, No. 11, Paper No. 238, 16 p. (2018). Reviewer: Deshna Loonker (Jodhpur) MSC: 65L60 34A08 65T60 PDF BibTeX XML Cite \textit{A. Secer} and \textit{S. Altun}, Mathematics 6, No. 11, Paper No. 238, 16 p. (2018; Zbl 1417.65146) Full Text: DOI OpenURL
Wang, Xiaofeng; Dai, Weizhong A three-level linear implicit conservative scheme for the Rosenau-KdV-RLW equation. (English) Zbl 1376.65116 J. Comput. Appl. Math. 330, 295-306 (2018). MSC: 65M06 65M12 35L75 35Q53 PDF BibTeX XML Cite \textit{X. Wang} and \textit{W. Dai}, J. Comput. Appl. Math. 330, 295--306 (2018; Zbl 1376.65116) Full Text: DOI OpenURL
Ak, Turgut; Dhawan, Sharanjeet; Karakoc, S. Battal Gazi; Bhowmik, Samir K.; Raslan, Kamal R. Numerical study of Rosenau-KdV equation using finite element method based on collocation approach. (English) Zbl 1488.35474 Math. Model. Anal. 22, No. 3, 373-388 (2017). MSC: 35Q53 76B15 76M10 65L60 41A15 PDF BibTeX XML Cite \textit{T. Ak} et al., Math. Model. Anal. 22, No. 3, 373--388 (2017; Zbl 1488.35474) Full Text: DOI OpenURL
Zahra, W. K.; Van Daele, M. Discrete spline methods for solving two point fractional Bagley-Torvik equation. (English) Zbl 1411.65098 Appl. Math. Comput. 296, 42-56 (2017). MSC: 65L12 34A08 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{W. K. Zahra} and \textit{M. Van Daele}, Appl. Math. Comput. 296, 42--56 (2017; Zbl 1411.65098) Full Text: DOI OpenURL
Mohammadi, Fakhrodin; Ciancio, Armando Wavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel. (English) Zbl 1412.47020 Wavel. Linear Algebra 4, No. 1, 53-73 (2017). MSC: 65R20 45K05 65T60 42C40 35R11 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{A. Ciancio}, Wavel. Linear Algebra 4, No. 1, 53--73 (2017; Zbl 1412.47020) OpenURL
Sheri, Siva Reddy; Modugula, Prasanthi Heat and mass transfer effects on unsteady MHD flow over an inclined porous plate embedded in porous medium with Soret-Dufour and chemical reaction. (English) Zbl 1397.76184 Int. J. Appl. Comput. Math. 3, No. 2, 1289-1306 (2017). MSC: 76W05 76S05 65M60 76M10 76V05 PDF BibTeX XML Cite \textit{S. R. Sheri} and \textit{P. Modugula}, Int. J. Appl. Comput. Math. 3, No. 2, 1289--1306 (2017; Zbl 1397.76184) Full Text: DOI OpenURL
Chang, Chih-Wen; Liu, Chein-Shan; Chang, Jiang-Ren; Chen, Han-Taw A simple spatial integration scheme for solving Cauchy problems of non-linear evolution equations. (English) Zbl 1398.65233 Inverse Probl. Sci. Eng. 25, No. 11, 1653-1675 (2017). MSC: 65M32 PDF BibTeX XML Cite \textit{C.-W. Chang} et al., Inverse Probl. Sci. Eng. 25, No. 11, 1653--1675 (2017; Zbl 1398.65233) Full Text: DOI OpenURL
Pathan, Mahabub Basha; Vembu, Shanthi A parameter-uniform second order numerical method for a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous convection coefficients and source terms. (English) Zbl 1380.65132 Calcolo 54, No. 3, 1027-1053 (2017). Reviewer: Srinivasan Natesan (Assam) MSC: 65L10 65L11 65L12 34E15 65L50 65L70 65L20 34B15 PDF BibTeX XML Cite \textit{M. B. Pathan} and \textit{S. Vembu}, Calcolo 54, No. 3, 1027--1053 (2017; Zbl 1380.65132) Full Text: DOI OpenURL
Shivanian, Elyas Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis. (English) Zbl 1370.65041 Numer. Methods Partial Differ. Equations 33, No. 3, 974-994 (2017). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 35K57 35R11 65M70 65M15 65M12 PDF BibTeX XML Cite \textit{E. Shivanian}, Numer. Methods Partial Differ. Equations 33, No. 3, 974--994 (2017; Zbl 1370.65041) Full Text: DOI OpenURL
Shivanian, Elyas; Jafarabadi, Ahmad An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. (English) Zbl 1417.65180 J. Comput. Appl. Math. 325, 18-33 (2017). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{E. Shivanian} and \textit{A. Jafarabadi}, J. Comput. Appl. Math. 325, 18--33 (2017; Zbl 1417.65180) Full Text: DOI OpenURL
Raju, R. Srinivasa; Aruna, G.; Naidu, N. Swamy; Varma, S. V. K.; Rashidi, M. M. Chemically reacting fluid flow induced by an exponentially accelerated infinite vertical plate in a magnetic field and variable temperature via LTT and FEM. (English) Zbl 1474.76104 Theor. Appl. Mech. (Belgrade) 43, No. 1, 49-83 (2016). MSC: 76W05 65N30 76V05 76M10 PDF BibTeX XML Cite \textit{R. S. Raju} et al., Theor. Appl. Mech. (Belgrade) 43, No. 1, 49--83 (2016; Zbl 1474.76104) Full Text: DOI OpenURL
Karaaslan, Mehmet Fatih; Celiker, Fatih; Kurulay, Muhammet Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods. (English) Zbl 1410.65253 Appl. Math. Comput. 285, 51-58 (2016). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{M. F. Karaaslan} et al., Appl. Math. Comput. 285, 51--58 (2016; Zbl 1410.65253) Full Text: DOI OpenURL
Mohammadi, Fakhrodin; Mohyud-Din, Syed Tauseef A fractional-order Legendre collocation method for solving the Bagley-Torvik equations. (English) Zbl 1422.65137 Adv. Difference Equ. 2016, Paper No. 269, 14 p. (2016). MSC: 65L60 65L10 34A08 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{S. T. Mohyud-Din}, Adv. Difference Equ. 2016, Paper No. 269, 14 p. (2016; Zbl 1422.65137) Full Text: DOI OpenURL
Mohammadi, Fakhrodin Second kind Chebyshev wavelet Galerkin method for stochastic Itô-Volterra integral equations. (English) Zbl 1359.65015 Mediterr. J. Math. 13, No. 5, 2613-2631 (2016). Reviewer: Melvin D. Lax (Long Beach) MSC: 65C30 65T60 60H20 60H35 45R05 PDF BibTeX XML Cite \textit{F. Mohammadi}, Mediterr. J. Math. 13, No. 5, 2613--2631 (2016; Zbl 1359.65015) Full Text: DOI OpenURL