New forms of the Cauchy operator and some of their applications. (English) Zbl 1342.33038

Summary: In this paper, we first construct the Cauchy \(q\)-shift operator \(T(a,b;D_{xy})\) and the Cauchy \(q\)-difference operator \(L(a,b;\theta_{xy})\). We then apply these operators in order to represent and investigate some new families of \(q\)-polynomials which are defined in this paper. We derive some \(q\)-identities such as generating functions, symmetry properties and Rogers-type formulas for these \(q\)-polynomials. We also give an application for the \(q\)-exponential operator \(R(bD_q)\).


33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Full Text: DOI


[1] Abdlhusein, M. A., The Euler operator for basic hypergeometric series, Int. J.^Adv. Appl. Math. Mech., 2, 42-52, (2014) · Zbl 1359.33010
[2] Carlitz, L.; Al-Salam, W. A., Some orthogonal q-polynomials, Math. Nachr., 30, 47-61, (1965) · Zbl 0135.27802
[3] Carlitz, L., Generating functions for certain q-orthogonal polynomials, Collect. Math., 23, 91-104, (1972) · Zbl 0273.33012
[4] Cao, J., Generalizations of certain carlitz’s trilinear and Srivastava-agarwal type generating functions, J. Math. Anal. Appl., 396, 351-362, (2012) · Zbl 1334.33024
[5] Cao, J., On carlitz’s trilinear generating functions, Appl. Math. Comput., 218, 9839-9847, (2012) · Zbl 1250.33019
[6] Cao, J.; Srivastava, H. M., Some q-generating functions of the Carlitz and Srivastava-agarwal types associated with the generalized Hahn polynomials and the generalized Rogers-szeg?o polynomials, Appl. Math. Comput., 219, 8398-8406, (2013) · Zbl 1297.33014
[7] V. Y. B. Chen, q-Difference Operator and Basic Hypergeometric Series (Ph. D. Thesis, Nankai University, Tianjin, People’s Republic of China, 2009).
[8] Chen, V. Y. B.; Gu, N. S. S., The Cauchy operator for basic hypergeometric series, Adv. Appl. Math., 41, 177-196, (2008) · Zbl 1140.33306
[9] Chen, W. Y. C.; Fu, A. M.; Zhang, B., The homogeneous q-difference operator, Adv. Appl. Math., 31, 659-668, (2003) · Zbl 1075.39018
[10] Chen, W. Y. C.; Liu, Z.-G., Parameter augmenting for basic hypergeometric series. II, J. Combin. Theory Ser. A, 80, 175-195, (1997) · Zbl 0901.33009
[11] Chen, W. Y. C.; Liu, Z.-G.; Sagan, B. E. (ed.); Stanley, R. P. (ed.), Parameter augmentation for basic hypergeometric series. I, 111-129, (1998) · Zbl 0901.33008
[12] Chen, W. Y. C.; Saad, H. L.; Sun, L. H., The bivariate Rogers-szeg?o polynomials, J. Phys. A: Math. Theoret., 40, 6071-6084, (2007) · Zbl 1119.05011
[13] W. Y. C. Chen, H. L. Saad, and L. H. Sun, “An Operator Approach to the Al-Salam-Carlitz Polynomials,” J. Math. Phys. 51, Article ID 043502 (2010). · Zbl 1310.33006
[14] Cigler, J., Elementare \(q\)-identitäten, 23-57, (1982)
[15] G. Gasper and M. Rahman, Basic Hypergeometric Series (Second Ed., Cambridge University Press, Cambridge, MA, 2004). · Zbl 1129.33005
[16] Liu, Z.-G., A new proof of the nassrallah-rahman integral, Acta Math. Sinica, 41, 405-410, (1998) · Zbl 1010.33009
[17] Saad, H. L.; Abdlhusein, M. A., The \(q\)-exponential operator and generalized Rogers-szego polynomials, J. Adv. Math., 8, 1440-1455, (2014)
[18] Saad, H. L.; Sukhi, A. A., Another homogeneous \(q\)-difference operator, Appl. Math. Comput., 215, 4332-4339, (2010) · Zbl 1196.39005
[19] Saad, H. L.; Sukhi, A. A., The \(q\)-exponential operator, Appl. Math. Sci., 7, 6369-6380, (2005)
[20] Srivastava, H. M.; Agarwal, A. K., Generating functions for a class of \(q\)-polynomials, Ann. Mat. Pura Appl. (Ser. 4), 154, 99-109, (1989) · Zbl 0652.33008
[21] Srivastava, H. M.; Jain, V. K., Some multilinear generating functions for \(q\)-Hermite polynomials, J. Math. Anal. Appl., 144, 147-157, (1989) · Zbl 0665.33008
[22] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985). · Zbl 0552.33001
[23] Srivastava, H. M., Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5, 390-444, (2011)
[24] Srivastava, H. M.; Singh, S. N.; Singh, S. P.; Yadav, V., Some conjugate WP-bailey pairs and transformation formulas for q-series, Creat. Math. Inform., 24, 199-209, (2015) · Zbl 1389.11016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.