×

On \(F_3(k,n)\)-numbers of the Fibonacci type. (English) Zbl 1476.11033

Summary: In this paper, we study a generalization of Narayana’s numbers and Padovan’s numbers. This generalization also includes a sequence whose elements are Fibonacci numbers repeated three times. We give combinatorial interpretations and a graph interpretation of these numbers. In addition, we examine matrix generators and determine connections with Pascal’s triangle.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11B65 Binomial coefficients; factorials; \(q\)-identities
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bednarz, U., Włoch, I., Wołowiec-Musiał, M.: Total graph interpretation of numbers of the Fibonacci type. J. Appl. Math. Article ID 837917 (2015) · Zbl 1347.05058
[2] Bednarz, U.; Włoch, A.; Wołowiec-Musiał, M., Distance Fibonacci numbers, their interpretations and matrix generators, Commentationes Mathematicae, 53, 1, 35-46 (2013) · Zbl 1361.11008
[3] Er, MC, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart., 22, 3, 204-207 (1984) · Zbl 0539.10013
[4] Kiliç, E., The generalized order-k-Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math., 209, 133-145 (2007) · Zbl 1162.11013
[5] Kiliç, E.; Tasci, D., On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Combinatoria, 94, 161-174 (2010) · Zbl 1240.11036
[6] Koshy, T., Fibonacci and Lucas Numbers with Applications (2001), A Wiley-Interscience Publication
[7] Kwaśnik, M.; Włoch, I., The total number of generalized stable sets and kernels in graphs, Ars Combinatoria, 55, 139-146 (2000) · Zbl 0993.05088
[8] Miles, EP Jr, Generalized Fibonacci numbers and associated matrices, Am. Math. Mon., 67, 745-752 (1960) · Zbl 0103.27203
[9] Özkan, E., Altun, İ.: Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials. Commun. Algebra 47, 10-12 (2019) · Zbl 1457.11019
[10] Özkan, E., Kuloğlu, B.: On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials. Asian-Eur. J. Math. 14(06), 2150100 (2021). doi:10.1142/S179355712150100X · Zbl 1484.11051
[11] Özkan, E.; Taştan, M., On Gauss Fibonacci polynomials, Gauss Lucas polynomials and their applications, Commun. Algebra, 48, 3, 952-960 (2020) · Zbl 1491.11022
[12] Özkan, E.; Taştan, M.; Aydoğdu, A., 2-Fibonacci polynomials in the family of Fibonacci numbers, Notes Number Theory Discrete Math., 24, 47-55 (2018)
[13] Sloane, N.J.A. (ed.): The on-line encyclopedia of integer sequences. https://oeis.org/. Accessed 10 May 2021 · Zbl 1044.11108
[14] Soykan, Y., On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech., 3, 43-56 (2020) · Zbl 1465.11068
[15] Włoch, I.; Bednarz, U.; Bród, D.; Włoch, A.; Wołowiec-Musiał, M., On a new type of distance Fibonacci numbers, Discrete Appl. Math., 161, 2695-2701 (2013) · Zbl 1350.11028
[16] Włoch, I.; Włoch, A., On some multinomial sums related to the Fibonacci type numbers, Tatra Mt. Math. Publ., 77, 99-108 (2020) · Zbl 0853.05078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.