×

The approximate solutions of three-dimensional diffusion and wave equations within local fractional derivative operator. (English) Zbl 1470.35395

Summary: We used the local fractional variational iteration transform method (LFVITM) coupled by the local fractional Laplace transform and variational iteration method to solve three-dimensional diffusion and wave equations with local fractional derivative operator. This method has Lagrange multiplier equal to minus one, which makes the calculations more easily. The obtained results show that the presented method is efficient and yields a solution in a closed form. Illustrative examples are included to demonstrate the high accuracy and fast convergence of this new method.

MSC:

35R11 Fractional partial differential equations

References:

[1] Kilbas, A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, (2006), Elsevier · Zbl 1092.45003
[2] Li, B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Computational Fluid and Solid Mechanics, (2006), London, UK: Springer, London, UK · Zbl 1110.76001
[3] Versteeg, H.; Malalasekera, W., An Introduction to Computational Fluid Dynamics, (2007), Upper Saddle River, NJ, USA: Prentice Hall, Upper Saddle River, NJ, USA
[4] Yang, X. J., Local Fractional Functional Analysis and Its Applications, (2011), Hong Kong: Asian Academic, Hong Kong
[5] Yang, X. J., Advanced Local Fractional Calculus and Its Applications, (2012), New York, NY, USA: World Scientific, New York, NY, USA
[6] Christianto, V.; Rahul, B., A derivation of proca equations on cantor sets: a local fractional approach, Bulletin of Mathematical Sciences & Applications, 10, 48-56, (2014) · doi:10.18052/www.scipress.com/bmsa.10.48
[7] Liu, H.-Y.; He, J.-H.; Li, Z.-B., Fractional calculus for nanoscale flow and heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 24, 6, 1227-1250, (2014) · Zbl 1356.80018 · doi:10.1108/hff-07-2013-0240
[8] Hao, Y.-J.; Srivastava, H. M.; Jafari, H.; Yang, X.-J., Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates, Advances in Mathematical Physics, 2013, (2013) · Zbl 1291.35037 · doi:10.1155/2013/754248
[9] Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, (1997), New York, NY, USA: Springer, New York, NY, USA · Zbl 0917.73004
[10] Spasic, A. M.; Lazarevic, M. P., Electroviscoelasticity of liquid/liquid interfaces: fractional-order model, Journal of Colloid and Interface Science, 282, 1, 223-230, (2005) · doi:10.1016/j.jcis.2004.08.113
[11] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0924.34008
[12] Yang, X. J.; Baleanu, D.; Zhong, W. P., Approximation solutions for diffusion equation on Cantor time-space, Proceeding of the Romanian Academy A, 14, 2, 127-133, (2013)
[13] Fan, Z.-P.; Jassim, H. K.; Raina, R. K.; Yang, X.-J., Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives, Thermal Science, 19, S137-S141, (2015) · doi:10.2298/tsci15s1s37f
[14] Jafari, H.; Jassim, H. K., Local fractional adomian decomposition method for solving two dimensional heat conduction equations within local fractional operators, Journal of Advance in Mathematics, 9, 4, 2574-2582, (2014)
[15] Baleanu, D.; Machado, J. A. T.; Cattani, C.; Baleanu, M. C.; Yang, X.-J., Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators, Abstract and Applied Analysis, 2014, (2014) · Zbl 1468.35226 · doi:10.1155/2014/535048
[16] Yang, X.-J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S. T., Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian Journal of Physics, 59, 1-2, 36-48, (2014)
[17] Xu, S.; Ling, X.; Zhao, Y.; Jassim, H. K., A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer, Thermal Science, 19, S99-S103, (2015) · doi:10.2298/tsci15s1s99x
[18] Yang, A.-M.; Yang, X.-J.; Li, Z.-B., Local fractional series expansion method for solving wave and diffusion equations on Cantor sets, Abstract and Applied Analysis, 2013, (2013) · Zbl 1295.35178 · doi:10.1155/2013/351057
[19] Cao, Y.; Ma, W. G.; Ma, L. C., Local fractional functional method for solving diffusion equations on Cantor sets, Abstract and Applied Analysis, 2014, (2014) · Zbl 1469.35217 · doi:10.1155/2014/803693
[20] Wang, S.-Q.; Yang, Y.-J.; Jassim, H. K., Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative, Abstract and Applied Analysis, 2014, (2014) · Zbl 1470.35416 · doi:10.1155/2014/176395
[21] Jassim, H. K., Local fractional Laplace decomposition method for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative, International Journal of Advances in Applied Mathematics and Mechanics, 2, 4, 1-7, (2015) · Zbl 1359.35087
[22] Zhang, Y.; Cattani, C.; Yang, X.-J., Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17, 10, 6753-6764, (2015) · doi:10.3390/e17106753
[23] Yang, X.-J.; Baleanu, D.; Srivastava, H. M., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Applied Mathematics Letters, 47, 54-60, (2015) · Zbl 1388.35218 · doi:10.1016/j.aml.2015.02.024
[24] Yang, X.-J.; Machado, J. A. T.; Srivastava, H. M., A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Applied Mathematics and Computation, 274, 143-151, (2016) · Zbl 1410.65415 · doi:10.1016/j.amc.2015.10.072
[25] Jafari, H.; Jassim, H. K.; Tchier, F.; Baleanu, D., On the approximate solutions of local fractional differential equations with local fractional operator, Entropy, 18, 150, 1-12, (2016) · doi:10.3390/e18020001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.