×

Existence of solutions for a class of \(p(x)\)-Kirchhoff type equation with dependence on the gradient. (English) Zbl 1422.35048

Summary: The object of this work is to study the existence of solutions for a class of \(p(x)\)-Kirchhoff type problem under no-flux boundary conditions with dependence on the gradient. We establish our results by using the degree theory for operators of \((S_+)\) type in the framework of variable exponent Sobolev spaces.

MSC:

35J60 Nonlinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. O. Alves and F. J. S. A. Corrˆea, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal., 8(2001), 43-56.
[2] C. O. Alves and F. J. S. A. Corrˆea, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys., 56(2015), 051501, 12pp. · Zbl 1318.35040
[3] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348(1996), 305-330. A Class of p(x)-Kirchhoff Type Equation545 · Zbl 0858.35083
[4] R. Ayazoglu and I. Ekincoiglu,Electrorheological fluids equations involving vari- able exponent with dependence on the gradient via mountain pass techniques, Numer. Funct. Anal. Optim., 37(9)(2016), 1144-1157. · Zbl 1354.35108
[5] M.-M. Boureanu and D. Udrea, Existence and multiplicity results for elliptic problems with p(·)-growth conditions, Nonlinear Anal. Real World Appl., 14(2013), 1829-1844.
[6] E. Cabanillas L., A.G. Aliaga LL. ,W. Barahona M. and G. Rodriguez V., Existence of Solutions for a Class of p(x)-Kirchhoff Type Equation Via Topological Methods, Int. J. Adv. Appl. Math. Mech., 2(4)(2015) 64-72. · Zbl 1359.35064
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6(2001), 701-730. · Zbl 1007.35049
[8] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30(1997), 4619-4627. · Zbl 0894.35119
[9] M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Mod´el. Math. Anal. Num´er., 26(1992), 447-467. · Zbl 0765.35021
[10] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations, Nonlinear Anal., 74(2011), 5962-5974. · Zbl 1232.35052
[11] F. J. S. A. Corrˆea and G. M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74(2006), 263-277.
[12] F. J. S. A. Corrˆea and G. M. Figueiredo, On a p-Kirchhoff equation via Krasnosel- skii’s genus, Appl. Math. Lett., 22(2009), 819-822.
[13] F. J. S. A. Corrˆea and S. D. B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147(2004), 475-489.
[14] G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359(2009), 275-284.
[15] G. Dai and R. Ma, Solutions for a p(x)-Kirchhoff-type equation with Neumann bound- ary data, Nonlinear Anal. Real World Appl., 12(2011), 2666-2680. · Zbl 1225.35079
[16] G. Dai and J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal., 73(2010), 3420-3430.
[17] P. D’Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108(1992), 247-262.
[18] M. Dreher, The Kirchhoff equation for the p-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64(2006), 217-238. · Zbl 1178.35006
[19] M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J., 36(2007), 21-52. · Zbl 1146.35060
[20] X. L. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 72(2010), 3314-3323. · Zbl 1189.35127
[21] X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl., 262(2001), 749-760.
[22] X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet prob- lems, Nonlinear Anal., 52(2003), 1843-1852. 546E. Cabanillas, J. Bernui, R. de la Cruz M. and Z. Huaringa S.
[23] X. L. Fan and D. Zhao, On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.
[24] F. Faraci, D. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54(2015) 525-538. · Zbl 1326.35159
[25] L. F. O. Faria, O. H. Miyagaki, D. Motreanu and M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal., 96(2014), 154-166. · Zbl 1285.35014
[26] G. M. Figueiredo, Quasilinear equations with dependence on the gradient via Moun- tain Pass techniques inRn, Appl. Math. Comput., 203(2008), 14-18.
[27] D. G. de Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via Mountain Pass techniques, Differential Integral Equations, 17(2004) 119-126. · Zbl 1164.35341
[28] N. B. Huy and B. T. Quan, Positive solutions of logistic equations with dependence on gradient and nonhomogeneous Kirchhoff term, J. Math. Anal. Appl., 444(2016), 95-109. · Zbl 1351.35063
[29] I. Kim and S. Hong, A topological degree for operators of generalized (S+) type, Fixed Point Theory Appl., (2015), 2015:194, 16 pp.
[30] G. Kirchhoff, Mechanik, Teubner, leipzig, Germany, 1883.
[31] J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.
[32] G. Liu, S. Shi and Y. Wei, Semilinear elliptic equations with dependence on the gra- dient, Electron. J. Differential Equations, 139(2012), 9 pp.
[33] J. Liu, L. Wang and P. Zhao, Positive solutions for a nonlocal problem with a convec- tion term and small perturbations, Math. Methods Appl. Sci., 40(3)(2017), 720-728. · Zbl 1358.35047
[34] A. Ourraoui, On an elliptic equation of p-Kirchhoff type with convection term, C. R. Math. Acad. Sci. Paris, 354(2016), 253-256. · Zbl 1387.35253
[35] M. Pei, L. Wang and X. Lv, Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term, Bound. Value Probl., 36(2017), 7 pp.
[36] I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Prob- lems, Translations of Mathematical Monographs 139, American Mathematical Society, Providence, RI, 1994; C. F. Vasconcellos, On a nonlinear stationary problem in unbounded domains, Rev. Mat. Univ. Complut. Madrid, 5(1992), 309-318.
[37] M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient, Bound. Value Probl., (2013), 2013:173, 11 pp.
[38] S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non- separable Banach spaces, Studia Math., 37(1971), 173-180
[39] Z. Yucedag and R. Ayazoglu, Existence of solutions for a class of Kirchhoff-type equation with nonstandard growth, Univ. J. App. Math., 2(5)(2014), 215-221
[40] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.