Well-posedness and numerical approximation of steady convection-diffusion-reaction problems in porous media. (English) Zbl 07595301

Summary: We study a class of steady nonlinear convection-diffusion-reaction problems in porous media. The governing equations consist of coupling the Darcy equations for the pressure and velocity fields to two equations for the heat and mass transfer. The viscosity and diffusion coefficients are assumed to be nonlinear depending on the temperature and concentration of the medium. Well-posedness of the coupled problem is analyzed and existence along with uniqueness of the weak solution is investigated based on a fixed-point method. An iterative scheme for solving the associated fixed-point problem is proposed and its convergence is studied. Numerical experiments are presented for two examples of coupled convection-diffusion-reaction problems. Applications to radiative heat transfer and propagation of thermal fronts in porous media are also included in this study. The obtained results show good numerical convergence and validate the established theoretical estimates.


76S05 Flows in porous media; filtration; seepage
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
76V05 Reaction effects in flows
35Q35 PDEs in connection with fluid mechanics


Full Text: DOI


[1] Adams, R. A.; Fournier, J., Sobolev Spaces (2003), Academic Press · Zbl 1098.46001
[2] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 3, 179-192 (1973) · Zbl 0258.65108
[3] Bause, M.; Knabner, P., Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping, Comput. Vis. Sci., 7, 2, 61-78 (2004) · Zbl 1120.76321
[4] Bear, J., Hydraulics of Groundwater (1979), Springer-Verlag: Springer-Verlag New York, NY, USA
[5] Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A.; Reis, H., Porous and Complex Flow Structures in Modern Technologies (2004), Springer Science & Business Media
[6] Bernard, J. M.E., Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math., Ser. B, 32, 6, 823-846 (2011) · Zbl 1259.41028
[7] Bernardi, C.; Dib, S.; Girault, V.; Hecht, F.; Murat, F.; Sayah, T., Finite element methods for Darcy’s problem coupled with the heat equation, Numer. Math., 139, 2, 315-348 (2018) · Zbl 1393.35159
[8] Bernardi, C.; Maarouf, S.; Yakoubi, D., Spectral discretization of Darcy’s equations coupled with the heat equation, IMA J. Numer. Anal., 36, 3, 1193-1216 (2016) · Zbl 1433.76121
[9] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183 (2013), Springer: Springer New York · Zbl 1286.76005
[10] Brezis, H., Analyse Fonctionnelle : Théorie et Applications (1983), Masson, Collection “Mathématiques Appliquées pour la Maîtrise” · Zbl 0511.46001
[11] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Publ. Math. Inf. Rennes, S4, 1-26 (1974) · Zbl 0338.90047
[12] Chen, Z.; Ewing, R., Mathematical analysis for reservoir models, SIAM J. Math. Anal., 30 (1999), 431-453 · Zbl 0922.35074
[13] Da Mota, J.; Dantas, W.; Marchesin, D., Combustion fronts in porous media, SIAM J. Appl. Math., 62, 6, 2175-2198 (2002) · Zbl 1017.80003
[14] De Marsily, G., Quantitative Hydrogeology. Groundwater Hydrology for Engineers (1986), Academic Press: Academic Press New York, NY, USA
[15] De Wit, Anne, Miscible density fingering of chemical fronts in porous media: nonlinear simulations, Phys. Fluids, 16, 1, 163-175 (2004) · Zbl 1186.76131
[16] Deteix, J.; Jendoubi, A.; Yakoubi, D., A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations, SIAM J. Numer. Anal., 52, 5, 2415-2439 (2014) · Zbl 1307.76072
[17] Douglas, T. F.; Russell, J., Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences, SIAM J. Numer. Anal., 19, 871-885 (1982) · Zbl 0492.65051
[18] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society · Zbl 0902.35002
[19] Feng, X., On existence and uniqueness results for a coupled system modeling miscible displacement in porous media, J. Math. Anal. Appl., 194 (1995), 883-910 · Zbl 0856.35030
[20] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[21] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[22] Ingham, D. B.; Pop, I., Transport Phenomena in Porous Media (1998), Elsevier · Zbl 0918.76002
[23] Jupp, T. E.; Woods, A. W., Thermally driven reaction fronts in porous media, J. Fluid Mech., 484, 329-346 (2003) · Zbl 1055.76059
[24] Khaled, A. R.A.; Vafai, K., The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transf., 46, 26, 4989-5003 (2003) · Zbl 1121.76521
[25] Lai, F. C.; Kulacki, F. A., The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium, Int. J. Heat Mass Transf., 33, 5, 1028-1031 (1990)
[26] Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 1 (1968), Dunod: Dunod Paris · Zbl 0165.10801
[27] Maarouf, S.; Yakoubi, D., Analysis of backward Euler/spectral discretization for an evolutionary mass and heat transfer in porous medium, J. Math. Anal. Appl., 492, 1, Article 124427 pp. (2020) · Zbl 1466.65156
[28] Malek, M.; Izem, N.; Mohamed, M. S.; Seaid, M.; Wakrim, M., Numerical solution of Rosseland model for transient thermal radiation in non-grey optically thick media using enriched basis functions, Math. Comput. Simul., 180, 258-275 (2021) · Zbl 07318195
[29] Martyushev, S. G.; Sheremet, M. A., Characteristics of Rosseland and P1 approximations in modeling nonstationary conditions of convection-radiation heat transfer in an enclosure with a local energy source, J. Eng. Thermophys., 21, 111-118 (2012)
[30] Modest, M. F., Radiative Heat Transfer (2013), Academic Press
[31] Mohsen, T.; Nader, K.; Peterson, G. P.; Shannon, Y., Challenges and progress on the modelling of entropy generation in porous media: a review, Int. J. Heat Mass Transf., 114, 31-46 (2017)
[32] Nield, D. A.; Bejan, A., Convection in Porous Media (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0924.76001
[33] Nield, D. A.; Bejan, A., Mechanics of fluid flow through a porous medium, (Convection in Porous Media (2013), Springer: Springer New York)
[34] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38, 309-332 (1982) · Zbl 0505.76100
[35] Pop, I.; Ingham, D. B., Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (2001), Elsevier
[36] Qureshi, I. H.; Nawaz, M.; Rana, S.; Zubair, T., Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer, Commun. Theor. Phys., 70, 1, Article 049 pp. (2018)
[37] Raviart, P. A.; Thomas, J. M., A mixed finite element method for 2-nd order elliptic problems, (Lecture Notes in Mathematics, vol. 606 (1977)) · Zbl 0362.65089
[38] Rosseland, S., Theoretical Astrophysics. Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes (1936), Clarendon Press: Clarendon Press Oxford · Zbl 0014.23403
[39] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia · Zbl 1002.65042
[40] Salhi, L.; El-Amrani, M.; Seaid, M., Analysis of a Galerkin-characteristic finite element method for convection-diffusion problems in porous media, Adv. Pure Appl. Math., 12, 96-122 (2021)
[41] Salhi, L.; El-Amrani, M.; Seaid, M., An enhanced finite element algorithm for thermal Darcy flows with variable viscosity, (Lecture Notes in Computer Science, vol. 12747 (2021))
[42] Salhi, L.; El-Amrani, M.; Seaid, M., A Galerkin-characteristic unified finite element method for moving thermal fronts in porous media, J. Comput. Appl. Math., 404, Article 113159 pp. (2022) · Zbl 07444598
[43] Salhi, L.; Taik, A., Reaction fronts in porous media, influence of Lewis number, linear stability analysis, Int. J. Adv. Appl. Math. Mech., 5, 1, 15-27 (2017) · Zbl 1458.76105
[44] Seaid, M., Multigrid Newton-Krylov method for radiation in diffusive semitransparent media, J. Comput. Appl. Math., 203, 498-515 (2007) · Zbl 1115.65128
[45] Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, fasc. 1, 189-258 (1965) · Zbl 0151.15401
[46] Tauseef, R.; Hafiz, M. A.; Muhammad, M. J.; Uzair, S.; Wei-Mon, Y., A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams, Int. J. Heat Mass Transf., 135, 649-673 (2019)
[47] Thömmes, G.; Pinnau, R.; Seaid, M.; Götz, Th.; Klar, A., Numerical methods and optimal control for glass cooling processes, Transp. Theory Stat. Phys., 31, 513-529 (2002) · Zbl 1011.80003
[48] Vafai, K., Handbook of Porous Media (2015), CRC Press · Zbl 1315.76005
[49] Volker, J.; Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 198, 3-4, 475-494 (2008) · Zbl 1228.76088
[50] Xuan, Y. M.; Roetzel, W., Bioheat equation of the human thermal system, Chem. Eng. Technol., 20, 4, 268-276 (1997)
[51] Xuan, Y. M.; Roetzel, W., Transient response of the human limb to an external stimulus, Int. J. Heat Mass Transf., 41, 229-239 (1998) · Zbl 0917.76103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.