×

A numerical framework to simplify CAD models for reliable estimates of physical quantities. (English) Zbl 1488.65639

Summary: The paper proposes a general numerical framework to simplify a CAD model into a volume mesh model under reliable control of certain prescribed physical quantity that the designer is interested in. Different from previous work, the proposed approach does not assume that the candidate features have been detected and can directly generate the simplified volume mesh model. In addition, it can efficiently estimate the quantitative impact of each individual feature via solving a linear equation of small dimension less than 10. This is achieved by reformulating the problem as estimating the solution differences caused by different stiffness matrices, using the combined approximation approach. Performance of this approach is demonstrated via numerical 2D examples.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] MEHMET A AKGÜN, JOHN H GARCELON AND RAPHAEL T HAFTKA, Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas, Int. J. Numer. Methods Eng., 50(7) (2001), pp. 1587-1606. · Zbl 0971.74076
[2] Y. BAZILEVS, V. CALO, J. COTTRELL, J. EVANS, T. HUGHES, S. LIPTON, M. SCOTT AND T. SEDERBERG, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Eng., 199(5-8) (2010), pp. 229-263. · Zbl 1227.74123
[3] A. CHATTERJEE, U. BASU AND BN. MANDAL, Numerical algorithm based on Bernstein polyno-mials for solving boundary value problems involving singular, singularly perturbed type differential equations, Int. J. Adv. Appl. Math. Mech., 5(3) (2018), pp. 1-14. · Zbl 1465.65060
[4] J. EL-SANA AND A. VARSHNEY, Controlled simplification of genus for polygonal models, in Vi-sualization’97., Proceedings, pages 403-410. IEEE, 1997.
[5] R. FERRANDES, P. MARIN, J. LEON AND F. GIANNINI, A posteriori evaluation of simplification details for finite element model preparation, Comput. Structures, 87(1-2) (2009), pp. 73-80.
[6] G. FOUCAULT, P. MARIN AND J. LEON, Mechanical criteria for the prepration of finite element models, in Proc. 13th International Meshing Roundtable, pages 413-426, 2004.
[7] G. FOUCAULT, J. CUILLIERE, V. FRANCOIS, J. LEON AND R. MARANZANA, Adaptation of CAD model topology for finite element analysis, Computer-Aided Design, 40(2) (2008), pp. 176-196.
[8] V. FRANCOIS AND J. C. CUILLIERE, 3D automatic remeshing applied to model modification, Computer-Aided Design, 32(7) (2000), pp. 433-444.
[9] S. GAO AND J. J SHAH, Automatic recognition of interacting machining features based on minimal condition subgraph, Computer-Aided Design, 30(9) (1998), pp. 727-739. · Zbl 1053.68672
[10] S. GOPALAKRISHNAN AND K. SURESH, A formal theory for estimating defeaturing-induced en-gineering analysis errors, Computer-Aided Design, 39(1) (2007), pp. 60-68.
[11] S. GOPALAKRISHNAN AND K. SURESH, Feature sensitivity: A generalization of topological sen-sitivity, Finite Elements Anal. Design, 44(11) (2008), pp. 696-704.
[12] T. GRATSCH AND K. BATHE, A posteriori error estimation techniques in practical finite element analysis, Comput. Structures, 83(4-5) (2005), pp. 235-265.
[13] Y. HAO, F. KANG, J. LI AND K. ZHANG, Computation of moments for Maxwell’s equations with random interfaces via pivoted low-rank approximation, J. Comput. Phys., 371 (2018), pp. 1-19. · Zbl 1415.65019
[14] K. HITTI, S. FEGHALI, F. RAFEH, M. BERNACKI AND PO. BOUCHARD, A novel monolithic Lagrangian approach for modelling crack propagation using anisotropic mesh adaptation, Int. J. Adv. Appl. Math. Mech., 5(3) (2018), pp. 53-65. · Zbl 1468.74065
[15] K. INOUE, T. ITOH, A. YAMADA, T. FURUHATA AND K. SHIMADA, Face clustering of a large-scale CAD model for surface mesh generation, Computer-Aided Design, 33(3) (2001), pp. 251-261.
[16] K. ITO, Z. QIAO AND J. TOIVANEN, A domain decomposition solver for acoustic scattering by elastic objects in layered media, J. Comput. Phys., 227(19) (2008), pp. 8685-8698. · Zbl 1145.74038
[17] U. KIRSCH, Reanalysis and sensitivity reanalysis by combined approximations, Struct. Multidisc. Optim., 40(1-6) (2010), pp. 1-15. · Zbl 1274.74275
[18] K. LEE, C. ARMSTRONG, M. PRICE AND J. LAMONT, A small feature suppression/unsuppression system for preparing B-Rep models for analysis, in Proceedings of the ACM Symposium on Solid and Physical Modeling, pages 113-124, Cambridge, MA, 2005.
[19] M. LI AND S. GAO, Estimating defeaturing-induced engineering analysis error for arbitrary 3D features, Computer-Aided Design, 43(12) (2011), pp. 1587-1597.
[20] M. LI, S. GAO AND R. MARTIN, Estimating effects of removing negative features on engineering analysis, Computer-Aided Design, Special Issue of ACM Solid and Physical Modeling, 43(1) (2011), pp. 1402-1412.
[21] M. LI, S. GAO AND R. MARTIN, Engineering analysis error estimation when removing finite-sized features in nonlinear elliptic problems, Computer-Aided Design, Special Issue of ACM Solid and Physical Modeling, 45(2) (2013), pp. 361-372.
[22] M. LI, S. GAO AND K. ZHANG, A goal-oriented error estimator for the analysis of simplified designs, Comput. Methods Appl. Mech. Eng., 255(0) (2013), pp. 89-103. · Zbl 1297.74166
[23] M. LI, B. ZHANG AND R. R MARTIN, Second-order defeaturing error estimation for multiple boundary features, Int. J. Numer. Methods Eng., 100(5) (2014), pp. 321-346. · Zbl 1352.65060
[24] D. LUEBKE, A developer’s survey of polygonal simplification algorithms, Comput. Graphics Appl. IEEE, 21(3) (2001), pp. 24-35.
[25] M. K. PRASAD AND M. KAUR, Stokes flow of viscous fluid past a micropolar fluid spheroid, Adv. Appl. Math. Mech., 9(5) (2017), pp. 1076-1093. · Zbl 1488.76005
[26] W. QUADROS AND S. OWEN, Defeaturing CAD models using a geometry-based size field and facet-based reduction operators, in Proceedings of the 18th International Meshing Roundtable, pages 301-328, 2009.
[27] V. SHAPIRO, I. TSUKANOV AND A. GRISHIN, Geometric issues in computer aided de-sign/computer aided engineering integration, J. Comput. Infor. Sci. Eng., 11(2) (2011), 021005.
[28] A. SHEFFER, Model simplification for meshing using face clustering, Computer-Aided Design, 33(13) (2001), pp. 925-934.
[29] J. SHEWCHUK, What is a good linear element? interpolation, conditioning and quality measures, in 11th International Meshing Roundtable, Ithaca, NY, 2002.
[30] W. D. SHI, J. J. XU AND S. SHU, A simple implementation of the semi-Lagrangian level-set method, Adv. Appl. Math. Mech., 9(1) (2017), pp. 104-124. · Zbl 1488.65284
[31] K. SHIMADA, Current issues and trends in meshing and geometric processing for computational engineering analyses, J. Comput. Infor. Sci. Eng., 11 (2011), pp. 1-13.
[32] O. SIGMUND AND K. MAUTE, Topology optimization approaches: A comparative review, Struct. Multidisc. Optim., 48 (2013), pp. 1031-1055.
[33] V. B. SUNIL AND S. S. PANDE, Automatic recognition of features from freeform surface CAD models, Computer-Aided Design, 40(4) (2008), pp. 502-517.
[34] A. THAKUR, A. BANERJEE AND S. GUPTA, A survey of CAD model simplification techniques for physics-based simulation applications, Computer-Aided Design, 41(2) (2009), pp. 65-80.
[35] I. TUREVSKY, S. GOPALAKRISHNAN AND K. SURESH, Defeaturing: A posteriori error analysis via feature sensitivity, Int. J. Numer. Methods Eng., 76(9) (2008), pp. 1379-1401. · Zbl 1195.74138
[36] I. TUREVSKY, S. GOPALAKRISHNAN AND K. SURESH, An efficient numerical method for com-puting the topological sensitivity of arbitrary-shaped features in plate bending, Int. J. Numer. Meth-ods Eng., 79(13) (2009), pp. 1683-1702. · Zbl 1176.74144
[37] S. VENKATARAMAN, Reconstruction of feature volumes and feature suppression, in Proc. ACM Symposium on Solid Modeling and Applications, pages 60-71, 2002.
[38] L. WANG, G. P. CHEN, T. G. WANG AND J. F. CAO, Numerical optimization and noise analysis of high-tip-speed wind turbine, Adv. Appl. Math. Mech., 9(3) (2017), pp. 1461-1484. · Zbl 1488.76130
[39] D. WHITE, S. SAIGAL AND S. OWEN, Meshing complexity: predicting meshing difficulty for single part CAD models, Eng. Comput., 21 (2005), pp. 76-90.
[40] K. ZHANG, M. LI AND J. LI, Estimation of impacts of removing arbitrarily constrained domain details to the analysis of incompressible fluid flows, Commun. Comput. Phys., 20(4) (2016), pp. 944-968. · Zbl 1373.76036
[41] J. ZHANG, K. ZHANG, J. LI AND Z. HE, A weak Galerkin method for diffraction gratings, Appl. Anal., 96(2) (2017), pp. 90-214. · Zbl 1360.78031
[42] J. ZHANG, K. ZHANG, J. LI AND X. WANG, A weak Galerkin finite element method for the Navier-Stokes equations, Commun. Comput. Phys., 23(4) (2018), pp. 706-746. · Zbl 1488.65486
[43] Z. ZHANG AND Z. QIAO, An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11(4) (2012), pp. 1261-1278. · Zbl 1388.65072
[44] H. ZHU, S. GAO, M. LI AND W. PAN, Adaptive tetrahedral remeshing for modified solid models, Graphical Models, 74(4) (2012), pp. 76-86.
[45] O. C. ZIENKIEWICZ AND R. L. TAYLOR, The Finite Element Method, Volume 3. McGraw-hill London, 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.