Assanova, Anar T. Solvability to an initial-periodic problem for delay partial differential equations of Sobolev type. (English) Zbl 07740702 Quaest. Math. 46, No. 9, 1751-1764 (2023). MSC: 35R10 35B10 35G16 PDF BibTeX XML Cite \textit{A. T. Assanova}, Quaest. Math. 46, No. 9, 1751--1764 (2023; Zbl 07740702) Full Text: DOI
Duan, Mengmeng; Yang, Yan; Feng, Minfu A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model. (English) Zbl 1505.65261 Appl. Numer. Math. 184, 406-430 (2023). MSC: 65M60 65M06 65N30 65M12 65M15 76A10 76M10 76M20 35Q35 PDF BibTeX XML Cite \textit{M. Duan} et al., Appl. Numer. Math. 184, 406--430 (2023; Zbl 1505.65261) Full Text: DOI
Shafranov, Dmitriĭ Evgen’evich Sobolev type equations in spaces of differential forms on Riemannian manifolds without boundary. (English) Zbl 1492.35004 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 112-122 (2022). MSC: 35-02 35K70 35R01 PDF BibTeX XML Cite \textit{D. E. Shafranov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 112--122 (2022; Zbl 1492.35004) Full Text: DOI MNR
Kitaeva, Ol’ga Gennad’evna Invariant manifolds of semilinear Sobolev type equations. (English) Zbl 1492.35003 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101-111 (2022). MSC: 35-02 35B42 35K70 35S10 37L25 PDF BibTeX XML Cite \textit{O. G. Kitaeva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101--111 (2022; Zbl 1492.35003) Full Text: DOI MNR
Manakova, Natal’ya Aleksandrovna; Gavrilova, Ol’ga Vital’evna; Perevozchikova, Kseniya Vladimirovna Semilinear models of Sobolev type. Non-uniqueness of solution to the Showalter-Sidorov problem. (Russian. English summary) Zbl 1501.35349 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 84-100 (2022). MSC: 35Q53 35Q92 35Q74 35Q35 35A02 35R01 PDF BibTeX XML Cite \textit{N. A. Manakova} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 84--100 (2022; Zbl 1501.35349) Full Text: DOI MNR
Zagrebina, Sof’ya Aleksandrovna; Konkina, Aleksandra Sergeevna The non-classical models of mathematical physics the multipoint initial-final value condition. (Russian. English summary) Zbl 1492.35005 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 60-83 (2022). MSC: 35-02 35K70 60H30 PDF BibTeX XML Cite \textit{S. A. Zagrebina} and \textit{A. S. Konkina}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 60--83 (2022; Zbl 1492.35005) Full Text: DOI MNR
Sukacheva, Tamara Gennad’evna Oskolkov models and Sobolev-type equations. (English) Zbl 1492.35233 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 5-22 (2022). MSC: 35Q35 76A10 35A01 35A02 PDF BibTeX XML Cite \textit{T. G. Sukacheva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 5--22 (2022; Zbl 1492.35233) Full Text: DOI MNR
Favini, Angelo; Zagrebina, Sophiya A.; Sviridyuk, Georgy A. The multipoint initial-final value condition for the Hoff equations on geometrical graph in spaces of \(\mathbf{K}\)-“noises”. (English) Zbl 1485.35363 Mediterr. J. Math. 19, No. 2, Paper No. 53, 19 p. (2022). MSC: 35R02 35R60 PDF BibTeX XML Cite \textit{A. Favini} et al., Mediterr. J. Math. 19, No. 2, Paper No. 53, 19 p. (2022; Zbl 1485.35363) Full Text: DOI
Perevozhikova, Kseniya Vladimirovna; Manakova, Natal’ya Aleksandrovna Research of the optimal control problem for one mathematical model of the Sobolev type. (English) Zbl 1483.35305 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 36-45 (2021). MSC: 35Q93 PDF BibTeX XML Cite \textit{K. V. Perevozhikova} and \textit{N. A. Manakova}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 36--45 (2021; Zbl 1483.35305) Full Text: DOI MNR
Kitaeva, Ol’ga Gennad’evna Invariant manifolds of the Hoff model in “noise” spaces. (English) Zbl 1486.35484 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 24-35 (2021). MSC: 35R60 35K20 35K70 35S10 PDF BibTeX XML Cite \textit{O. G. Kitaeva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 24--35 (2021; Zbl 1486.35484) Full Text: DOI MNR
Big-Alabo, Akuro; Ezekwem, Chidozie Accurate solution and analysis of the transient temperature and stability of combustible micron-sized iron particle in gaseous oxidizing environment. (English) Zbl 1499.80009 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 57, 18 p. (2021). MSC: 80A25 80A19 80A21 35F20 80M99 35B40 PDF BibTeX XML Cite \textit{A. Big-Alabo} and \textit{C. Ezekwem}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 57, 18 p. (2021; Zbl 1499.80009) Full Text: DOI
Gavrilova, O. V. Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor. (English) Zbl 1457.49018 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 1, 14-23 (2020). MSC: 49K20 35K57 PDF BibTeX XML Cite \textit{O. V. Gavrilova}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 12, No. 1, 14--23 (2020; Zbl 1457.49018) Full Text: MNR
Banasiak, Jacek; Manakova, Natal’ya Aleksandrovna; Sviridyuk, Georgiĭ Anatol’evich Positive solutions to Sobolev type equations with relatively \(p\)-sectorial operators. (English) Zbl 07293385 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 17-32 (2020). MSC: 47Dxx 35-XX PDF BibTeX XML Cite \textit{J. Banasiak} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 17--32 (2020; Zbl 07293385) Full Text: DOI MNR
Zamyshlyaeva, Alyona A.; Lut, Aleksandr V. Inverse problem for the Boussinesq-Love mathematical model. (English) Zbl 1494.35196 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer. Springer Proc. Math. Stat. 325, 427-434 (2020). MSC: 35R30 35Q53 47A10 47N20 PDF BibTeX XML Cite \textit{A. A. Zamyshlyaeva} and \textit{A. V. Lut}, Springer Proc. Math. Stat. 325, 427--434 (2020; Zbl 1494.35196) Full Text: DOI
Keller, Alevtina V.; Sagadeeva, Minzilia A. Degenerate matrix groups and degenerate matrix flows in solving the optimal control problem for dynamic balance models of the economy. (English) Zbl 1494.91087 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer. Springer Proc. Math. Stat. 325, 263-277 (2020). MSC: 91B55 49J27 35Q35 49J15 35K70 PDF BibTeX XML Cite \textit{A. V. Keller} and \textit{M. A. Sagadeeva}, Springer Proc. Math. Stat. 325, 263--277 (2020; Zbl 1494.91087) Full Text: DOI
Sedov, A. I. The use of the inverse problem of spectral analysis to forecast time series. (English) Zbl 1499.35721 J. Comput. Eng. Math. 6, No. 1, 74-78 (2019). MSC: 35R30 35A01 47A52 PDF BibTeX XML Cite \textit{A. I. Sedov}, J. Comput. Eng. Math. 6, No. 1, 74--78 (2019; Zbl 1499.35721) Full Text: DOI MNR
Kondyukov, Alekseĭ Olegovich; Sukacheva, Tamara Gennad’evna A non-stationary model of the incompressible viscoelastic Kelvin-Voigt fluid of non-zero order in the magnetic field of the Earth. (English) Zbl 1433.35284 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 3, 42-51 (2019). MSC: 35Q35 35G61 76A10 35A01 35A02 86A25 86A05 35Q86 PDF BibTeX XML Cite \textit{A. O. Kondyukov} and \textit{T. G. Sukacheva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 3, 42--51 (2019; Zbl 1433.35284) Full Text: DOI MNR
Goncharov, Nikita Sergeevich The Barenblatt-Zheltov-Kochina model on the segment with Wentzell boundary conditions. (English) Zbl 1428.35091 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 2, 136-142 (2019). MSC: 35G16 35Q35 PDF BibTeX XML Cite \textit{N. S. Goncharov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 2, 136--142 (2019; Zbl 1428.35091) Full Text: DOI MNR
Kirillov, Evgeniĭ Vadimovich; Zakirova, Galiya Amrullovna Spectral problem for a mathematical model of hydrodynamics. (English) Zbl 1458.76052 J. Comput. Eng. Math. 5, No. 1, 51-56 (2018). MSC: 76E99 35Q35 PDF BibTeX XML Cite \textit{E. V. Kirillov} and \textit{G. A. Zakirova}, J. Comput. Eng. Math. 5, No. 1, 51--56 (2018; Zbl 1458.76052) Full Text: DOI MNR
Furaev, V. Z.; Antonenko, A. I. Approximation of solutions to the boundary value problems for the generalized Boussinesq equation. (English) Zbl 1401.35288 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 4, 145-150 (2017). MSC: 35Q79 35A35 PDF BibTeX XML Cite \textit{V. Z. Furaev} and \textit{A. I. Antonenko}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 10, No. 4, 145--150 (2017; Zbl 1401.35288) Full Text: DOI MNR
Manakova, Natal’ya Aleksandrovna On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model. (English) Zbl 1427.35303 J. Comput. Eng. Math. 3, No. 4, 59-72 (2016). MSC: 35Q93 49J20 65M60 65M06 65D32 35R35 PDF BibTeX XML Cite \textit{N. A. Manakova}, J. Comput. Eng. Math. 3, No. 4, 59--72 (2016; Zbl 1427.35303) Full Text: DOI MNR
Zamyshlyaeva, A. A.; Tsyplenkova, O. N.; Bychkov, E. V. Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order. (English) Zbl 1356.49006 J. Comput. Eng. Math. 3, No. 2, 57-67 (2016). MSC: 49J27 49K27 35Q93 34H05 PDF BibTeX XML Cite \textit{A. A. Zamyshlyaeva} et al., J. Comput. Eng. Math. 3, No. 2, 57--67 (2016; Zbl 1356.49006) Full Text: DOI