Shafranov, D. E.; Kitaeva, O. G.; Sviridyuk, G. A. Stochastic equations of Sobolev type with relatively \(p \)-radial operators in spaces of differential forms. (English. Russian original) Zbl 1480.60183 Differ. Equ. 57, No. 4, 507-516 (2021); translation from Differ. Uravn. 57, No. 4, 526-535 (2021). Summary: We consider the Showalter-Sidorov problem for the stochastic version of the linear Ginzburg-Landau equation in Hilbert spaces of smooth differential forms defined on a compact oriented Riemannian manifold without boundary with stochastic processes serving as coefficients. This equation is reduced to an abstract Sobolev type stochastic equation with a relatively radial operator on the right-hand side, for which the solvability of the Showalter-Sidorov problem is established and the stability of solutions is investigated using dichotomies. Differentiation of stochastic processes that are the coefficients of differential forms is understood in the sense of the Nelson-Gliklikh derivative. Cited in 3 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60H30 Applications of stochastic analysis (to PDEs, etc.) 35R60 PDEs with randomness, stochastic partial differential equations Keywords:\(p \)-radial operators; Showalter-Sidorov problem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Zagrebina, S. A.; Sagadeeva, M. A., Ustoichivye i neustoichivye mnogoobraziya reshenii polulineinykh uravnenii sobolevskogo tipa (Stable and Unstable Manifold of Solutions of Semilinear Sobolev Type Equations) (2016), Chelyabinsk: Yuzhno-Ural. Gos/ Univ., Chelyabinsk · Zbl 1448.47006 [2] Sagadeeva, M. A.; Zagrebina, S. A.; Manakova, N. A., Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation, Evol. Equat. Control Theory, 8, 3, 473-488 (2019) · Zbl 1426.49007 · doi:10.3934/eect.2019023 [3] Sagadeeva, M. A.; Shulepov, A. N., On one nonlinear model based on relatively radial Sobolev type equation, Vestn. Odessk. Nats. Univ. Ser. Mat. Mekh., 18, 2, 35-43 (2013) [4] Drazin, F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti (Introduction to the Theory of Hydrodynamic Stability) (2005), Moscow: Fizmatlit, Moscow [5] Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups (1983), New York-Berlin-Heidelberg-Tokyo: Springer-Verlag, New York-Berlin-Heidelberg-Tokyo · Zbl 0516.58001 · doi:10.1007/978-1-4757-1799-0 [6] Sviridyuk, G. A.; Fedorov, V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators (2003), Utrecht-Boston-Köln-Tokyo: VSP, Utrecht-Boston-Köln-Tokyo · Zbl 1102.47061 · doi:10.1515/9783110915501 [7] Gliklikh, Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics (2011), London-Dordrecht-Heidelberg-New York: Springer, London-Dordrecht-Heidelberg-New York · Zbl 1216.58001 · doi:10.1007/978-0-85729-163-9 [8] Shafranov, D. E.; Kitaeva, O. G., The Barenblatt-Zheltov-Kochina model with the Showalter-Sidorov condition and additive “white noise” in spaces of differential forms on Riemannian manifolds without boundary, Global Stochastic Anal., 5, 2, 145-159 (2018) [9] Kitaeva, O. G.; Shafranov, D. E.; Sviridyuk, G. A., Exponential dichotomies in Barenblatt-Zheltov-Kochina model in spaces of differential forms with “noise”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Programm., 12, 2, 47-57 (2019) · Zbl 1428.35691 [10] Kitaeva, O.G., Shafranov, D.E., and Sviridyuk, G.A., Degenerate holomorphic semigroups of operators in spaces of \(k\)-“noises” on Riemannian manifolds, in Semigroups of Operators-II Theory and Applications SOTA 2018. Springer Proc. Math. Stat., Cham: Springer, 2020, vol. 325. pp. 279-292. · Zbl 1494.58014 [11] Kitaeva, O. G., Stable and unstable invariant spaces of one stochastic non-classical equation with a relatively radial operator on a 3-torus, J. Comput. Eng. Math., 2, 40-49 (2020) · Zbl 1501.35468 · doi:10.14529/jcem200204 [12] Shafranov, D. E., Numerical solutions of the Dzektser equation with “white noise” in the space of smooth differential forms on a torus, J. Comput. Eng. Math., 2, 58-65 (2020) · Zbl 07489411 · doi:10.14529/jcem200206 [13] Favini, A.; Sviridyuk, G. A.; Sagadeeva, M. A., Linear Sobolev type equations with relatively \(p \)-radial operators in space of “noises”, Mediterr. J. Math., 6, 13, 4607-4621 (2016) · Zbl 1366.60086 · doi:10.1007/s00009-016-0765-x [14] Favini, A.; Sviridyuk, G. A.; Manakova, N. A., Linear Sobolev type equations with relatively \(p \)-sectorial operators in space of “noises”, Abstract Appl. Anal., 15, 1-8 (2015) · Zbl 1345.60054 [15] Sviridyuk, G. A.; Manakova, N. A., Dynamic Sobolev type models with Showalter-Sidorov condition with additive “noise”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Program., 7, 1, 90-103 (2014) · Zbl 1303.60060 [16] Favini, A.; Sviridyuk, G. A.; Zamyshlyaeva, A. A., One class of Sobolev type equations of higher order with additive “white noise”, Commun. Pure Appl. Anal., 1, 15, 185-196 (2016) · Zbl 1331.35406 [17] Melnikova, I. V., Abstract stochastic equations. II: Solutions in spaces of abstract stochastic distributions, J. Math. Sci., 5, 116, 3620-3656 (2003) · Zbl 1056.60054 · doi:10.1023/A:1024159908410 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.