×

Inverse problem for Whitham type multi-dimensional differential equation with impulse effects. (English) Zbl 1517.35259

Summary: In the article the questions of unique solvability and determination of the redefinition coefficient function in the inverse problem for multi-dimensional Whitham-type partial differential equation with impulse effects are studied. The modified method of characteristics allows partial differential equations of the first order to be represented as ordinary differential equations that describe the change of an unknown function along the line of characteristics. The unique solvability of the multi-dimensional inverse problem is proved by the method of successive approximations and contraction mappings. The definition of the unknown coefficient is reduced to solving the Volterra integral equation of the first kind.

MSC:

35R30 Inverse problems for PDEs
35F25 Initial value problems for nonlinear first-order PDEs
35R12 Impulsive partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benchohra, M.; Henderson, J.; Ntouyas, S. K., Impulsive Differential Equations and Inclusions Contemporary Mathematics and its Application (2006), New York: Hindawi, New York · Zbl 1130.34003
[2] Halanay, A.; Wexler, D., Qualitative Theory of Impulsive Systems (1968), Bucuresti: Acad. RSR, Bucuresti · Zbl 0176.05202
[3] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002 · doi:10.1142/0906
[4] N. A. Perestyk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effect: Multivalued Right-Hand Sides with Discontinuities, Vol. 40 of De Gruyter Studies in Mathematics (Walter de Gruter, Berlin, 2011). · Zbl 1234.34002
[5] Samoilenko, A. M.; Perestyk, N. A., Impulsive Differential Equations (1995), Singapore: World Scientific, Singapore · Zbl 0837.34003 · doi:10.1142/2892
[6] Stamova, I.; Stamov, G., Applied Impulsive Mathematical Models, CMS Books in Mathematics (2016), Cham: Springer, Cham · Zbl 1355.34004
[7] Catlla, J.; Schaeffer, D. G.; Witelski, Th. P.; Monson, E. E.; Lin, A. L., On spiking models for synaptic activity and impulsive differential equations, SIAM Rev., 50, 553-569 (2008) · Zbl 1166.34004 · doi:10.1137/060667980
[8] Fedorov, E. G.; Popov, I. Yu., Analysis of the limiting behavior of a biological neurons system with delay, J. Phys.: Conf. Ser., 2086, 012109 (2021)
[9] E. G. Fedorov and I. Yu. Popov, ‘‘Hopf bifurcations in a network of Fitzhigh-Nagumo biological neurons,’’ Int. J. Nonlin. Sci. Numer. Simul. (2021).
[10] Fedorov, E. G., Properties of an oriented ring of neurons with the Fitzhugh-Nagumo model, Nanosyst.: Phys. Chem. Math., 12, 553-562 (2021)
[11] A. Anguraj and M. M. Arjunan, ‘‘Existence and uniqueness of mild and classical solutions of impulsive evolution equations,’’ Electron. J. Differ. Equat. 2005, 111-1-8 (2005). · Zbl 1245.34011
[12] Ashyralyev, A.; Sharifov, Ya. A., Existence and uniqueness of solutions for nonlinear impulsive differential equations with two point and integral boundary conditions, Adv. Differ. Equat., 2013, 173 (2013) · Zbl 1390.34071 · doi:10.1186/1687-1847-2013-173
[13] Ch. Bai and D. Yang, ‘‘Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions,’’ Boundary Value Probl. 2007, 41589-1-13 (2007). · Zbl 1139.34026
[14] Bin, L.; Xinzhi, L.; Xiaoxin, L., Robust global exponential stability of uncertain impulsive systems, Acta Math. Sci., 25, 161-169 (2005) · Zbl 1081.34520 · doi:10.1016/S0252-9602(17)30273-4
[15] M. J. Mardanov, Ya. A. Sharifov, and M. H. Habib, ‘‘Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions,’’ Electr. J. Differ. Equat. 2014, 259-1-8 (2014). · Zbl 1320.34027
[16] Yuldashev, T. K., Periodic solutions for an impulsive system of nonlinear differential equations with maxima, Nanosyst.: Phys. Chem. Math., 13, 135-141 (2022)
[17] Yuldashev, T. K., “Periodic solutions for an impulsive system of integro-differential equations with maxima,” Vestn. Samar. Univ., Ser.: Fiz.-, Mat. Nauki, 26, 368-379 (2022) · Zbl 1524.45034
[18] Yuldashev, T. K.; Fayziev, A. K., On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima, Nanosyst.: Phys. Chem. Math., 13, 36-44 (2022)
[19] Yuldashev, T. K.; Fayziev, A. K., Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector, Lobachevskii J. Math., 43, 2332-2340 (2022) · Zbl 1509.34027 · doi:10.1134/S1995080222110312
[20] Yuldashev, T. K.; Ergashev, T. G.; Abduvahobov, T. A., “Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima,” Chelyab. Fiz.-, Mat. Zh., 7, 312-325 (2022) · Zbl 1503.45007
[21] Assanova, A. T., On the solvability of non-local boundary value problem for the systems of impulsive hyperbolic equations with mixed derivatives, Discontin. Nonlin. Compl., 2, 153-165 (2016) · Zbl 1349.35232
[22] Assanova, A. T.; Kadirbayeva, Zh. M., On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations, Comput. Appl. Math., 37, 4966-4976 (2018) · Zbl 1402.65070 · doi:10.1007/s40314-018-0611-9
[23] Assanova, A. T.; Kadirbayeva, Zh. M., Periodic problem for an impulsive system of the loaded hyperbolic equations, Electron. J. Differ. Equat., 72, 1-8 (2018) · Zbl 1398.35282
[24] Asanova, A. T.; Kadirbaeva, Z. M.; Bakirova, E. A., On the unique solvability of a nonlocal boundary-value problem for systems of loaded hyperbolic equations with impulsive actions, Ukr. Math. J., 69, 1175-1195 (2018) · Zbl 1420.35070 · doi:10.1007/s11253-017-1424-5
[25] Assanova, A. T.; Tleulessova, A. B., Nonlocal problem for a system of partial differential equations of higher order with pulsed actions, Ukr. Math. J., 71, 1821-1842 (2020) · Zbl 1503.35282 · doi:10.1007/s11253-020-01750-9
[26] Goritskiy, A. Yu.; Kruzhkov, S. N.; Chechkin, G. A., Partial Differential Equations of the First Order (1999), Moscow: Mosk. Gos. Univ., Moscow
[27] Imanaliev, M. I.; Ved, Yu. A., On a partial differential equation of the first order with an integral coefficient, Differ. Equat., 23, 325-335 (1989) · Zbl 0689.45019
[28] Imanaliev, M. I.; Alekseenko, S. N., On the theory of systems of nonlinear integro-differential partial differential equations of the Whitham type, Dokl. Math., 46, 169-173 (1993)
[29] Alekseenko, S. N.; Dontsova, M. V., “Study of the solvability of a system of equations describing the distribution of electrons in the electric field of a sprite,” Mat. Vestn. Pedvuzov Univ. Volgo-Vyatsk, Reg., 14, 34-41 (2012)
[30] Alekseenko, S. N.; Dontsova, M. V., “Local existence of a bounded solution of a system of equations describing the distribution of electrons in a weakly ionized plasma in the electric field of a sprite,” Mat. Vestn. Pedvuzov Univ. Volgo-Vyatsk, Reg., 15, 52-59 (2013)
[31] Alekseenko, S. N.; Dontsova, M. V., “Solvability conditions for a system of equations describing long waves in a rectangular water channel whose depth varies along the axis,” Zh. Srednevolzh. Mat, Ob-va, 18, 115-124 (2016) · Zbl 1374.74051
[32] Alekseenko, S. N.; Dontsova, M. V.; Pelinovsky, D. E., Global solutions to the shallow water system with a method of an additional argument, Appl. Anal., 96, 1444-1465 (2017) · Zbl 1375.35354 · doi:10.1080/00036811.2016.1208817
[33] M. V. Dontsova, ‘‘Nonlocal solvability conditions for the Cauchy problem for a system of partial differential equations of the first order with continuous and bounded right-hand sides,’’ Vestn. Voronezh. Univ., Ser. Fiz. Mat., No. 4, 116-130 (2014). · Zbl 1352.35015
[34] Dontsova, M. V., Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides, Ufa Math. J., 6, 68-80 (2014) · Zbl 1463.35182 · doi:10.13108/2014-6-4-68
[35] Imanaliev, M. I.; Alekseenko, S. N., To the problem of the existence of a smooth bounded solution for a system of two nonlinear partial differential equations of the first order, Dokl. Math., 64, 10-15 (2001)
[36] M. I. Imanaliev, P. S. Pankov, and S. N. Alekseenko, ‘‘Additional argument method,’’ Vestn. Kazakh. Nats. Univ., Ser.: Mat., Mekh., Inform., No. 1, 60-64 (2006).
[37] T. K. Yuldashev, ‘‘On the inverse problem for a quasilinear partial differential equation of the first order,’’ Vestn. Tomsk. Univ., Mat. Mekh., No. 2 (18), 56-62 (2012). · Zbl 07592904
[38] Yuldashev, T. K., Initial problem for a quasilinear partial integro-differential equation of higher order with a degenerate kernel, Izv. Inst. Mat. Inform. Udmurt. Univ., 52, 116-130 (2018) · Zbl 1452.35231 · doi:10.20537/2226-3594-2018-52-09
[39] Yuldashev, T. K.; Shabadikov, K. Kh., Initial-value problem for a higher-order quasilinear partial differential equation, J. Math. Sci., 254, 811-822 (2021) · Zbl 1461.35011 · doi:10.1007/s10958-021-05343-0
[40] F. A. Aliev, N. A. Ismailov, A. A. Namazov, and I. A. Magarramov, ‘‘Asymptotic method for determining the coefficient of hydraulic resistance in different sections of the pipeline during oil production,’’ Proc. IAM 6 (1), 3-15 (2017).
[41] Ashurov, R. R.; Fayziev, Yu. E., Inverse problem for finding the order of the fractional derivative in the wave equation, Math. Notes, 110, 842-852 (2021) · Zbl 1481.35394 · doi:10.1134/S0001434621110213
[42] S. Z. Djamalov and R. R. Ashurov, ‘‘On one linear inverse problem for multidimensional equation of the mixed type of the first kind and of the second order,’’ Russ. Math. (Iz. VUZ) 63 (6), 8-18 (2019). · Zbl 1427.35354
[43] Gamzaev, Kh. M., “Numerical method for solving the coefficient inverse problem for the diffusion-convection-reaction equation,” Vestn. Tomsk. Univ, Mat. Mekh., 50, 67-78 (2017)
[44] Heydarzade, N. A., On one nonlocal inverse boundary problem for the second-order elliptic equation, Trans. Natl. Acad. Sci. Azerb. Math., 40, 97-109 (2020) · Zbl 1524.35738
[45] Kostin, A. B., The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation, Sb. Math., 204, 1391-1434 (2013) · Zbl 1292.35329 · doi:10.1070/SM2013v204n10ABEH004344
[46] Romanov, V. G., On the determination of the coefficients in the viscoelasticity equations, Sib. Math. J., 55, 503-510 (2014) · Zbl 1302.35361 · doi:10.1134/S0037446614030124
[47] Romanov, V. G.; Yamamoto, M., Recovering two coefficients in an elliptic equation via phaseless information, Inverse Probl. Imaging, 13, 81-91 (2019) · Zbl 1407.35229 · doi:10.3934/ipi.2019005
[48] Yuldashev, T. K., Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel, Lobachevskii J. Math., 38, 547-553 (2017) · Zbl 1372.45017 · doi:10.1134/S199508021703026X
[49] Yuldashev, T. K., On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter, Lobachevskii J. Math., 40, 230-239 (2019) · Zbl 1472.45012 · doi:10.1134/S199508021902015X
[50] T. K. Yuldashev, ‘‘On an inverse problem for a system of quasilinear partial differential equations of the first order,’’ Vestn. Yuzh.-Ural. Univ., Ser. Mat. Mekh. Fiz., No. 6, 35-41 (2012). · Zbl 1331.35395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.