Biswas, Tanmay; Biswas, Chinmay A note on some growth properties of composite entire function on the basis of their generalized type \((\alpha, \beta)\) and generalized weak type \((\alpha, \beta)\). (English) Zbl 07683891 Gaṇita 71, No. 1, 55-66 (2021). MSC: 30D35 30D30 PDF BibTeX XML Cite \textit{T. Biswas} and \textit{C. Biswas}, Gaṇita 71, No. 1, 55--66 (2021; Zbl 07683891) Full Text: Link OpenURL
Biswas, Tanmay; Biswas, Chinmay A note on the integral representations of generalized relative ORDER \((\alpha, \beta)\) and generalized relative TYPE \((\alpha, \beta)\) of entire and meromorphic functions with respect to an entire function. (English) Zbl 1502.30102 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 4, 355-376 (2021). MSC: 30D35 30D30 30D20 PDF BibTeX XML Cite \textit{T. Biswas} and \textit{C. Biswas}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 4, 355--376 (2021; Zbl 1502.30102) Full Text: DOI OpenURL
Biswas, Tanmay; Biswas, Chinmay On the growth properties of composite entire functions. (English) Zbl 1492.30065 J. Ramanujan Soc. Math. Math. Sci. 9, No. 1, 47-58 (2021). MSC: 30D20 30D15 PDF BibTeX XML Cite \textit{T. Biswas} and \textit{C. Biswas}, J. Ramanujan Soc. Math. Math. Sci. 9, No. 1, 47--58 (2021; Zbl 1492.30065) Full Text: Link OpenURL
Biswas, Tanmay; Biswas, Chinmay On some growth properties of composite entire and meromorphic functions From the view point of their generalized type \((\alpha,\beta)\) and generalized weak type \((\alpha,\beta)\). (English) Zbl 1499.30268 South East Asian J. Math. Math. Sci. 17, No. 1, 31-44 (2021). MSC: 30D35 30D30 PDF BibTeX XML Cite \textit{T. Biswas} and \textit{C. Biswas}, South East Asian J. Math. Math. Sci. 17, No. 1, 31--44 (2021; Zbl 1499.30268) Full Text: Link OpenURL
Biswas, Tanmay; Biswas, Chinmay Some generalized growth properties of composite entire and meromorphic functions. (English) Zbl 1475.30080 Korean J. Math. 29, No. 1, 121-136 (2021). MSC: 30D35 30D30 30D20 PDF BibTeX XML Cite \textit{T. Biswas} and \textit{C. Biswas}, Korean J. Math. 29, No. 1, 121--136 (2021; Zbl 1475.30080) Full Text: DOI OpenURL