Set-open topologies on function spaces. (English) Zbl 1392.54020

Let \(X\) and \(Y\) be topological spaces and \(F(X,Y)\) (\(C(X,Y)\)) be the set of all (continuous) functions \(f:X\to Y\). The authors consider different types of topologies defined on \(F(X,Y)\). The first type consists of various set-open topologies defined as follows. Let \(\lambda\subset\mathcal{P}(X)\) be a network which covers \(X\). For any \(A\in\lambda\) and open \(G\subset Y\), let \(N(A,G) = \{f \in F(X,Y) : f(A)\subset G\}\). Then the collection \(\{N(A,G) : A\in\lambda, \text{ open } G \subseteq Y \}\) forms a subbase for a “set-open” topology on \(F(X, Y)\), called the \(\lambda\)-open topology and denoted \(t_\lambda\). In the first part of the paper under review the authors study existence, comparison and coincidence of such topologies in the setting of \(Y\) a general topological space as well as for \(Y = \mathbb{R}\). In addition to the \(t_\lambda\)-topology, the authors define the notion of \(t_{\lambda^\ast}\)-topology on \(C(X,Y)\) which has as a subbase the collection \(\{ N^\ast_c(A,G): A\in\lambda, \text{ open }G\subset Y\}\), where \(N^\ast_c(A,G)=\{ f\in C(X,Y): \overline{f(A)}\subset G\}\).
In the next parts of the paper the authors also consider the topology of uniform convergence on elements of \(\lambda\) on \(C(X,Y)\), denoted by \(C_{\lambda,u}(X,Y)\), which has as a base at each \(f\in C(X,Y)\) the collection \(\{ \langle f,A, \varepsilon\rangle: A\in\lambda, \varepsilon> 0\}\), where \(\{ \langle f,A, \varepsilon\rangle=\{ g\in C(X,Y): \operatorname{sup}_{x\in A}\varrho(f(x),g(x))<\varepsilon\}\).
Finally the authors consider the notions of quasi-uniform convergence topologies on \(F(X,Y)\), which are parallel to those of the set-open topologies. Let \((Y, \mathcal{U})\) be a quasi-uniform space, and let \(\lambda\subset\mathcal{P}(X)\) be a collection which covers \(X\). For any \(A\in\lambda\) and \(U\in\mathcal{U}\), let \(\hat{U}|A=\{ (f,g)\in F(X,Y)\times F(X,Y): (f(x),g(x))\in U \text{ for all }x\in A\}\). Then the collection \(\{ \hat{U}|A : A\in\lambda \text{ and }U\in \mathcal U\}\) forms a subbase for a quasi-uniformity, called the quasi-uniformity of quasi-uniform convergence on the sets in \(\lambda\) induced by \(\mathcal{U}\). The induced topology on \(F(X, Y)\) is called the topology of quasi-uniform convergence on the sets in \(\lambda\) and is denoted by \(\mathcal{U}_\lambda\). The authors establish some results on closedness and completeness of the space \(C^\alpha(X, Y)\) of all \(\alpha\)-continuous functions from \(X\) into \(Y\) in the \(\mathcal{U}_X\)-topology.


54C35 Function spaces in general topology
54C30 Real-valued functions in general topology
54E15 Uniform structures and generalizations
54C08 Weak and generalized continuity
Full Text: DOI Link


[1] W. K. Alqurashi and L. A. Khan, Quasi-uniform convergence topologies on function spaces- Revisited, Appl. Gen. Top. 18, no. 2, (2017), 301-316. https://doi.org/10.4995/agt.2017.7048 · Zbl 1382.54007
[2] R. F. Arens, A topology for spaces of transformations, Ann. Math. 47, no. 3 (1946), 480-495. https://doi.org/10.2307/1969087 · Zbl 0060.39704
[3] R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31. https://doi.org/10.2140/pjm.1951.1.5 · Zbl 0044.11801
[4] A. Bouchair and S. Kelaiaia, Comparison of some set open topologies on C(X,Y), Topology Appl. 178, (2014), 352-359. https://doi.org/10.1016/j.topol.2014.10.008 · Zbl 1305.54027
[5] A. Di Concilio and S. A. Naimpally, Some proximal set-open topologies, Boll. Unione Mat. Ital. (8) 1-B, (2000), 173-191. · Zbl 0942.54012
[6] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, 77, Marcel Dekker, Inc., 1982. · Zbl 0501.54018
[7] R. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429-432. https://doi.org/10.1090/S0002-9904-1945-08370-0 · Zbl 0060.41202
[8] D. Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303-308. https://doi.org/10.1090/S0002-9939-1950-0036503-X · Zbl 0037.35501
[9] D. Gulick, The σ-compact-open topology and its relatives, Math. Scand. 30 (1972), 159-176. https://doi.org/10.7146/math.scand.a-11072 · Zbl 0253.46045
[10] D. Gulick and J. Schmets, Separability and semi-norm separability for spaces of bounded continuous functions, Bull. Soc. Roy. Sci. Leige 41 (1972), 254-260. · Zbl 0243.46037
[11] H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21 (1971), 31-34.
[12] J. R. Jackson, Comparison of topologies on function spaces, Proc. Amer. Math. Soc. 3 (1952), 156-158. https://doi.org/10.1090/S0002-9939-1952-0046031-5 · Zbl 0046.11703
[13] J. L. Kelley, General topology, D. Van Nostrand Company, New York, 1955.
[14] J. L. Kelley and I. Namioka, Linear topological spaces, D. Van Nostrand, 1963. https://doi.org/10.1007/978-3-662-41914-4
[15] L. A. Khan and K. Rowlands, The σ-compact-open topology and its relatives on a space of vector-valued functions, Boll. Unione Mat. Italiana (7) 5-B, (1991), 727-739. · Zbl 0766.54012
[16] J. L. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45 (2012), 947-952. https://doi.org/10.1515/dema-2013-0413 · Zbl 1272.54017
[17] S. Kundu and R. A. McCoy, Topologies between compact and uniform convergence on function spaces, Internat. J. Math. Math. Sci. 16, no. 1 (1993), 101-110. https://doi.org/10.1155/S0161171293000122 · Zbl 0798.54019
[18] S. Kundu and P. Garg, The pseudocompact-open topology on C(X), Topology Proceedings. Vol. 30, (2006), 279-299. · Zbl 1126.54008
[19] H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: Beyond topology, Contemp. Math., 486, Amer. Math. Soc., Providence, RI, 2009, pp. 239-304. https://doi.org/10.1090/conm/486/09511
[20] H.-P. A. Künzi and S. Romaguera, Spaces of continuous functions and quasi-uniform convergence, Acta Math. Hungar. 75 (1997), 287-298. https://doi.org/10.1023/A:1006593505036
[21] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, \(alpha\)-continuous and \(alpha \)-open mappings, Acta Math. Hungar. 41, (1983), 213-218. https://doi.org/10.1007/BF01961309 · Zbl 0534.54006
[22] R. A. McCoy and I. Ntantu, Completeness properties of function spaces, Topology Appl. 22 (1986), 191-206. https://doi.org/10.1016/0166-8641(86)90009-X · Zbl 0621.54011
[23] R. A. McCoy and I. Ntantu, Topological properties of function spaces, Lecture Notes in Math. No. 1315, Springer-Verlag, 1988. · Zbl 0647.54001
[24] S. B. Myers, Equicontinuous sets of mappings, Ann. Math. 47 (1946), 496-502. https://doi.org/10.2307/1969088 · Zbl 0061.24305
[25] S. A. Naimpally, Function spaces of quasi-uniform spaces, Indag. Math. 27 (1966), 768-771. · Zbl 0134.41703
[26] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970. https://doi.org/10.2140/pjm.1965.15.961 · Zbl 0137.41903
[27] S. E. Nokhrin, Some properties of set-open topologies, J. Math. Sci. 144 (2007), 4123-4151. https://doi.org/10.1007/s10958-007-0258-3 · Zbl 1151.54014
[28] S. E. Nokhrin and A. V. Osipov, On the coincidence of set-open and uniform topologies, Proc. Steklov Inst. Math. Suppl. 267 (2009), 184-191. https://doi.org/10.1134/S0081543809070165 · Zbl 1235.54010
[29] A. V. Osipov, The set-open topology, Topology Proc. 37 (2011), 205-217. · Zbl 1227.54021
[31] A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl. 159, no. 13 (2012), 3059-3066. https://doi.org/10.1016/j.topol.2012.05.018 · Zbl 1250.54019
[32] A. V. Osipov, Topological-algebraic properties of function spaces with set-open topologies, TTopology Appl. 159, no. 13 (2012), 800-805. https://doi.org/10.1016/j.topol.2011.11.049 · Zbl 1243.54037
[33] A. V. Osipov, On the completeness properties of the C-compact-open topology on C(X), Ural Mathematical Journal 1, no. 1 (2015), 61-67. https://doi.org/10.15826/umj.2015.1.006 · Zbl 1396.54019
[34] A. V. Osipov, Uniformity of uniform convergence on the family of sets, Topology Proc. 50 (2017), 79-86. · Zbl 1384.54011
[35] B. Papadopoulos, (Quasi) Uniformities on the set of bounded maps, Internat. J. Math. & Math. Scl. 17 (1994), 693-696. https://doi.org/10.1155/S0161171294000980 · Zbl 0812.54024
[36] W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316-317. https://doi.org/10.1007/BF01440953 · Zbl 0101.40501
[37] S. Romaguera, On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hungar. 73 (1996), 159-178. https://doi.org/10.1007/BF00058951 · Zbl 0924.54035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.