Kovalevsky, Alexander A. On the convergence of solutions of variational problems with pointwise functional constraints in variable domains. (English. Russian original) Zbl 1465.49012 J. Math. Sci., New York 254, No. 3, 375-396 (2021); translation from Ukr. Mat. Visn. 17, No. 4, 509-537 (2020). Summary: We consider a sequence of convex integral functionals \(F_s : W^{1 ,p } ( \Omega_s) \rightarrow \mathbb{R}\) and a sequence of weakly lower semicontinuous and, in general, nonintegral functionals \(G_s : W^{1 ,p } ( \Omega_s) \rightarrow \mathbb{R} \), where \( \{\Omega_s\}\) is a sequence of domains in \(\mathbb{R}^n\) contained in a bounded domain \(\Omega \subset \mathbb{R}^n\) (\(n \geq 2\)) and \(p > 1\). Along with this, we consider a sequence of closed convex sets \(V_s = \{v \in W^{1 ,p } ( \Omega_s ) : M_s(v) \leq 0 \text{ a.e. in } \Omega_s \}\), where \(M_s\) is a mapping from \(W^{1 ,p } ( \Omega_s)\) to the set of all functions defined on \(\Omega_s\). We establish conditions under which minimizers and minimum values of the functionals \(F_s +G_s\) on the sets \(V_s\) converge to a minimizer and the minimum value of a functional on the set \(V = \{v \in W^{1 ,p } (\Omega ) : M(v) \leq 0 \text{ a.e. in } \Omega \}\), where \(M\) is a mapping from \(W^{1 ,p } (\Omega )\) to the set of all functions defined on \(\Omega \). Cited in 1 Document MSC: 49J45 Methods involving semicontinuity and convergence; relaxation Keywords:variational problem; integral functional; pointwise functional constraint; minimizer; minimum value; \( \Gamma \)-convergence; strong connectedness; variable domains PDF BibTeX XML Cite \textit{A. A. Kovalevsky}, J. Math. Sci., New York 254, No. 3, 375--396 (2021; Zbl 1465.49012); translation from Ukr. Mat. Visn. 17, No. 4, 509--537 (2020) Full Text: DOI OpenURL References: [1] L. Boccardo and F. Murat, “Homogenization of nonlinear unilateral problems,” in: Composite Media and Homogenization Theory, Birkhäuser, Boston, 1991, pp. 81-105. · Zbl 0749.49009 [2] Dal Maso, G., Limits of minimum problems for general integral functionals with unilateral obstacles, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 74, 2, 55-61 (1983) · Zbl 0526.49006 [3] Dal Maso, G., An Introduction to Γ-Convergence (1993), Boston: Birkhäuser, Boston · Zbl 0816.49001 [4] De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 58, 6, 842-850 (1975) · Zbl 0339.49005 [5] Khruslov, EY, The first boundary value problem in domains with a complicated boundary for higher order equations, Math. USSR-Sb., 32, 4, 535-549 (1977) · Zbl 0396.35039 [6] Khruslov, EY, The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain, Math. USSR-Sb., 35, 2, 266-282 (1979) · Zbl 0421.35019 [7] A. A. Kovalevskii, “Some problems connected with the problem of averaging variational problems for functionals with a variable domain,” in: Current Analysis and Its Applications [in Russian], Naukova Dumka, Kiev, 1989, pp. 62-70. [8] Kovalevskii, AA, On the connectedness of subsets of Sobolev spaces and the Γ-convergence of functionals with varying domain of definition, Nelin. Granich. Zad., 1, 48-54 (1989) [9] Kovalevskii, AA, On necessary and sufficient conditions for the Γ-convergence of integral functionals with different domains of definition, Nelin. Granich. Zad., 4, 29-39 (1992) [10] Kovalevskii, AA, G-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain, Russian Acad. Sci. Izv. Math., 44, 3, 431-460 (1995) [11] Kovalevskii, AA, On the Γ-convergence of integral functionals defined on Sobolev weakly connected spaces, Ukr. Math. J., 48, 5, 683-698 (1996) · Zbl 0932.35195 [12] Kovalevsky, AA, On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains, Nonlin. Anal., 147, 63-79 (2016) · Zbl 1350.49010 [13] Kovalevsky, AA, Convergence of solutions of bilateral problems in variable domains and related questions, Ural Math. J., 3, 2, 51-66 (2017) · Zbl 1448.49020 [14] Kovalevsky, AA, Variational problems with unilateral pointwise functional constraints in variable domains, Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1, 115-131 (2018) · Zbl 1401.49029 [15] Kovalevsky, AA; Rudakova, OA, Variational problems with pointwise constraints and degeneration in variable domains, Differ. Equ. Appl., 1, 4, 517-559 (2009) · Zbl 1184.49021 [16] V. A. Marchenko and E. Ya. Khruslov, “Boundary-value problems with fine-grained boundary,” Mat. Sbornik, 65(107)(3), 458-472 (1964). [17] V. A. Marchenko and E. Ya. Khruslov, Boundary Value Problems in Domains with a Fine-Grained Boundary [in Russian], Naukova Dumka, Kiev, 1974. · Zbl 0289.35002 [18] V. A. Marchenko and E. Ya. Khruslov, Homogenized Models of Microinhomogeneous Media [in Russian], Naukova Dumka, Kiev, 2005. [19] Pankov, A., G-Convergence and Homogenization of Nonlinear Partial Differential Operators (1997), Dordrecht: Kluwer, Dordrecht · Zbl 0883.35001 [20] Pankratov, L., Γ-convergence of nonlinear functionals in thin reticulated structures, C. R. Math. Acad. Sci. Paris, 335, 3, 315-320 (2002) · Zbl 1031.49024 [21] Sandrakov, GV, Homogenization of variational inequalities and equations defined by pseudomonotone operators, Sb. Math., 199, 1, 67-98 (2008) · Zbl 1184.35039 [22] I. V. Skrypnik, “Quasilinear Dirichlet problem for domains with fine-grained boundary,” Dokl. Akad. Nauk Ukr. SSR. Ser. A, No. 2, 21-25 (1982). · Zbl 0485.35046 [23] Skrypnik, IV, Convergence of the solutions of a nonlinear Dirichlet problem at the refinement of the boundary of the domain, Zap. Nauchn. Sem. LOMI, 115, 236-250 (1982) · Zbl 0501.35035 [24] Skrypnik, IV, The averaging of nonlinear Dirichlet problems in domains with channels, Dokl. Math., 42, 3, 853-857 (1991) · Zbl 0757.35027 [25] Skrypnik, IV, Homogenization of non-linear Dirichlet problems in perforated domains of general type, Sb. Math., 187, 8, 1229-1260 (1996) · Zbl 0874.35012 [26] I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, 1994. · Zbl 0822.35001 [27] Skrypnik, IV, Selected Works [in Russian] (2008), Naukova Dumka: Kiev, Naukova Dumka [28] Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), 22, 4, 571-597 (1968) · Zbl 0174.42101 [29] Vainberg, MM, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations (1974), New York: Wiley, New York [30] Zhikov, VV; Kozlov, SM; Oleinik, OA; Ngoan, HT, Averaging and G-convergence of differential operators, Russian Math. Surv., 34, 5, 69-147 (1979) · Zbl 0445.35096 [31] Zhikov, VV, Questions of convergence, duality, and averaging for functionals of the calculus of variations, Math. USSR-Izv., 23, 2, 243-276 (1984) · Zbl 0551.49012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.