Ochilova, N. K.; Yuldashev, T. K. On a nonlocal boundary value problem for a degenerate parabolic-hyperbolic equation with fractional derivative. (English) Zbl 1490.35232 Lobachevskii J. Math. 43, No. 1, 229-236 (2022). Summary: The goal of this work is to study the existence and uniqueness of the solution to a nonlocal boundary value problem for a degenerate differential equation of mixed type. A parabolic-hyperbolic equation with a fractional Gerasimov-Caputo derivative is considered. The uniqueness of the solution is proved by the integral energy method using the some properties of hypergeometric functions and integro-differential operators of fractional order. The existence of the solution is proved by the method of integral equations. MSC: 35M10 PDEs of mixed type 35R11 Fractional partial differential equations Keywords:Gaussian hypergeometric function; Cauchy problem; existence and uniqueness; method of integral equations; fractional Gerasimov-Caputo derivative PDF BibTeX XML Cite \textit{N. K. Ochilova} and \textit{T. K. Yuldashev}, Lobachevskii J. Math. 43, No. 1, 229--236 (2022; Zbl 1490.35232) Full Text: DOI OpenURL References: [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies (Elsevier Science, Amsterdam, 2006). · Zbl 1092.45003 [2] Podlubny, I., Fractional Differential Equations (1999), New York: Academic, New York · Zbl 0924.34008 [3] Abdullaev, O. Kh., On the problem for a mixed-type degenerate equation with Caputo and Erdelyi-Kober operators of fractional order, Ukr. Math. J., 71, 825-842 (2019) · Zbl 1436.93064 [4] Islomov, B. I.; Abdullayev, O. Kh.; Ochilova, N. K., “On a problem for the loaded degenerating mixed type equation involving integral-differential operators,” Nanosyst.: Phys., Chem, Math., 8, 323-333 (2017) [5] Islomov, B. I.; Ochilova, N. K.; Sadarangani, K. S., On a Frankl type boundary value problem for a mixed type degenerating equation, Ukr. Math. J., 71, 1347-1359 (2019) · Zbl 1503.35116 [6] Marichev, O. I.; Kilbas, A. A.; Repin, A. A., Boundary Value Problems for Partial Differential Equations with Discounting Coefficients (2008), Samara: Samar. Gos. Ekon. Univ., Samara · Zbl 1147.35003 [7] Repin, O. A., Boundary Value Problems with Shift for Equations of Huperbolic and Mixed Type (1992), Saratov: Saratov Univ., Saratov · Zbl 0867.35002 [8] Abdullaev, O. Kh., On a problem for the degenerating parabolic-hyperbolic equation involving Caputo derivative of fractional order and non-linear terms, Uzbek Math. J., 65, 5-16 (2021) · Zbl 1488.35370 [9] Kilbas, A. A.; Repin, O. A., An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative, Fract. Calc. Appl. Anal., 13, 69-84 (2010) · Zbl 1201.35148 [10] Sadarangani, K. B.; Abdullaev, O. Kh., About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives, Int. J. Differ. Equat., 2016, 9815796 (2016) · Zbl 1487.35418 [11] Abdullaev, O. Kh., On the problem for a mixed-type degenerate equation with Caputo and Erdelyi-Kober operators of fractional order, Ukr. Math. J., 71, 825-842 (2019) · Zbl 1436.93064 [12] Alimov, Sh. A.; Ashurov, R. R., Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation, J. Inverse Ill-Posed Probl., 28, 651-658 (2020) · Zbl 1461.35207 [13] Ashurov, R. R.; Cabada, A.; Turmetov, B., Operator method for construction of solutions of linear fractional differential equations with constant coefficients, Fract. Calc. Appl. Anal., 1, 229-252 (2016) · Zbl 1339.34006 [14] R. R. Ashurov and Yu. Fayziev, ‘‘Determination of fractional order and source term in a fractional subdiffusion equation,’’ arXiv: submit/3264960 [math.AP] (2020). [15] Ashurov, R. R.; Umarov, S., Determination of the order of fractional derivative for subdiffusion equations, Fract. Calc. Appl. Anal., 23, 1647-1662 (2020) · Zbl 1474.35633 [16] Eneeva, L. M., “Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins,” Vestn. KRAUNTS, Fiz.-, Mat. Nauki, 36, 65-71 (2021) · Zbl 07512599 [17] Salakhitdinov, M. S.; Karimov, E. T., Uniqueness of inverse source non-local problem for fractional order mixed type equation, Euras. Math. J., 7, 74-83 (2016) · Zbl 1463.35371 [18] Yuldashev, T. K.; Abdullaev, O. Kh., Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms, Lobachevskii J. Math., 42, 1113-1123 (2021) · Zbl 1466.35269 [19] Yuldashev, T. K.; Islomov, B. I.; Ubaydullaev, U. Sh., “On boundary value problems for a mixed type fractional differential equation with Caputo operator,” Bull. Karaganda Univ, Math. Ser., 101, 127-137 (2021) [20] Yuldashev, T. K.; Kadirkulov, B. J., Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator, Ural Math. J., 6, 153-167 (2020) · Zbl 1448.35341 [21] Yuldashev, T. K.; Kadirkulov, B. J., Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions, Lobachevskii J. Math., 42, 649-662 (2021) · Zbl 1465.35412 [22] T. K. Yuldashev and B. J. Kadirkulov, ‘‘Inverse problem for a partial differential equation with Gerasimov-Caputo type operator and degeneration,’’ Fract. Fractions 5 (2), 58-1-13 (2021). [23] T. K. Yuldashev and E. T. Karimov, ‘‘Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters,’’ Axioms 9 (4), 121-1-24 (2020). [24] Yuldashev, T. K.; Karimov, E. T., Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters, Izv. IMI Udmurt. Univ., 57, 190-205 (2021) · Zbl 1471.35209 [25] Yuldashev, T. K.; Rakhmonov, F. D., Nonlocal problem for a nonlinear fractional mixed type integro-differential equation with spectral parameters, AIP Conf. Proc., 2365, 060003-1-20 (2021) [26] Pskhu, A. V., Partial Differential Equation of Fractional Order (2005), Moscow: Nauka, Moscow · Zbl 1193.35245 [27] Pskhu, A. V., Solution of boundary value problems fractional diffusion equation by the Green function method, Differ. Equat., 39, 1509-1513 (2003) · Zbl 1070.45010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.