Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Initial value problems for nonlinear Caputo fractional relaxation differential equations. (English) Zbl 07626847 Khayyam J. Math. 8, No. 1, 85-93 (2022). MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Khayyam J. Math. 8, No. 1, 85--93 (2022; Zbl 07626847) Full Text: DOI OpenURL
Ushakov, Vladimir Nikolaevich; Ershov, Aleksandr Anatol’evich On the parametric dependence of the volume of integral funnels and their approximations. (Russian. English summary) Zbl 1507.93107 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 32, No. 3, 447-462 (2022). MSC: 93C15 34A60 93B03 93C10 PDF BibTeX XML Cite \textit{V. N. Ushakov} and \textit{A. A. Ershov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 32, No. 3, 447--462 (2022; Zbl 1507.93107) Full Text: DOI MNR OpenURL
Finogenko, Igor A.; Sesekin, Alexander N. Approximation of positional impulse controls for differential inclusions. (English) Zbl 07603901 Ural Math. J. 8, No. 1, 43-54 (2022). MSC: 93C27 93B12 34A60 PDF BibTeX XML Cite \textit{I. A. Finogenko} and \textit{A. N. Sesekin}, Ural Math. J. 8, No. 1, 43--54 (2022; Zbl 07603901) Full Text: DOI MNR OpenURL
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 1493.45009 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 34A37 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 1493.45009) Full Text: DOI MNR OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and Ulam stability for nonlinear Caputo-Hadamard fractional differential equations with three-point boundary conditions. (English) Zbl 1493.34026 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63-76 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63--76 (2022; Zbl 1493.34026) Full Text: Link OpenURL
Ardjouni, Abdelouaheb Existence and approximation of solutions for nonlinear hybrid Caputo-Hadamard fractional integro-differential equations via Dhage iteration principle. (English) Zbl 07619495 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 4, Math., 31-41 (2021). MSC: 45-XX 34A12 34A38 PDF BibTeX XML Cite \textit{A. Ardjouni}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 4, Math., 31--41 (2021; Zbl 07619495) Full Text: Link OpenURL
Ardjouni, Abdelouaheb Existence results for a Caputo-Hadamard type fractional boundary value problem. (English) Zbl 1499.34029 Fract. Differ. Calc. 11, No. 2, 241-253 (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Ardjouni}, Fract. Differ. Calc. 11, No. 2, 241--253 (2021; Zbl 1499.34029) Full Text: DOI OpenURL
Budochkina, S. A.; Luu, T. H. On connection between variationality of a six-order ordinary differential equation and Hamilton-Ostrogradskii equations. (English) Zbl 1506.47085 Lobachevskii J. Math. 42, No. 15, 3594-3605 (2021). MSC: 47G40 70H05 34A55 PDF BibTeX XML Cite \textit{S. A. Budochkina} and \textit{T. H. Luu}, Lobachevskii J. Math. 42, No. 15, 3594--3605 (2021; Zbl 1506.47085) Full Text: DOI OpenURL
Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and Ulam stability results for fractional differential equations with mixed nonlocal conditions. (English) Zbl 1502.34009 Azerb. J. Math. 11, No. 2, 78-97 (2021). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Azerb. J. Math. 11, No. 2, 78--97 (2021; Zbl 1502.34009) Full Text: Link OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Initial value problems of nonlinear fractional differential equations with two orders. (English) Zbl 1487.34021 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 369-386 (2021). MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 369--386 (2021; Zbl 1487.34021) Full Text: DOI OpenURL
Kostić, M.; Pilipović, S.; Velinov, D.; Fedorov, V. E. \(c\)-almost periodic type distributions. (English) Zbl 1484.46046 Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 2, 190-207 (2021). MSC: 46F05 34C27 42A75 PDF BibTeX XML Cite \textit{M. Kostić} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 2, 190--207 (2021; Zbl 1484.46046) Full Text: MNR OpenURL
Boutiara, Abdellatif; Matar, Mohammed M.; Kaabar, Mohammed K. A.; Martínez, Francisco; Etemad, Sina; Rezapour, Shahram Some qualitative analyses of neutral functional delay differential equation with generalized Caputo operator. (English) Zbl 1476.34159 J. Funct. Spaces 2021, Article ID 9993177, 13 p. (2021). MSC: 34K37 34K40 34K30 34K10 47N20 34K27 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Funct. Spaces 2021, Article ID 9993177, 13 p. (2021; Zbl 1476.34159) Full Text: DOI OpenURL
Surkov, Platon G. Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach. (English) Zbl 1498.26016 Fract. Calc. Appl. Anal. 24, No. 3, 895-922 (2021). MSC: 26A33 65D25 34A08 PDF BibTeX XML Cite \textit{P. G. Surkov}, Fract. Calc. Appl. Anal. 24, No. 3, 895--922 (2021; Zbl 1498.26016) Full Text: DOI OpenURL
Khachay, O. Yu. Asymptotic problem for second-order ordinary differential equation with nonlinearity corresponding to a butterfly catastrophe. (English. Russian original) Zbl 1461.34078 J. Math. Sci., New York 252, No. 2, 247-265 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 125-142 (2018). Reviewer: Bertin Zinsou (Johannesburg) MSC: 34E05 34A34 34B40 34A12 34B08 PDF BibTeX XML Cite \textit{O. Yu. Khachay}, J. Math. Sci., New York 252, No. 2, 247--265 (2021; Zbl 1461.34078); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 125--142 (2018) Full Text: DOI OpenURL
Ponosov, Arcady; Idels, Lev; Kadiev, Ramazan Stochastic McKendrick-von Foerster models with applications. (English) Zbl 07571792 Physica A 537, Article ID 122641, 14 p. (2020). MSC: 82-XX 34K50 60H30 92Bxx PDF BibTeX XML Cite \textit{A. Ponosov} et al., Physica A 537, Article ID 122641, 14 p. (2020; Zbl 07571792) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions. (English) Zbl 1499.34066 Filomat 34, No. 14, 4881-4891 (2020). MSC: 34A08 26A33 34A09 34B10 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Filomat 34, No. 14, 4881--4891 (2020; Zbl 1499.34066) Full Text: DOI OpenURL
Kumar, M. Sathish; Ganesan, V. Asymptotic behavior of solutions of third-order neutral differential equations with discrete and distributed delay. (English) Zbl 1484.34096 AIMS Math. 5, No. 4, 3851-3874 (2020). MSC: 34C10 34C15 34K11 PDF BibTeX XML Cite \textit{M. S. Kumar} and \textit{V. Ganesan}, AIMS Math. 5, No. 4, 3851--3874 (2020; Zbl 1484.34096) Full Text: DOI OpenURL
Sahir, Muhammad Jibril Shahab Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus. (English) Zbl 1473.26030 Commun. Math. 28, No. 3, 277-287 (2020). MSC: 26D15 26D20 34N05 PDF BibTeX XML Cite \textit{M. J. S. Sahir}, Commun. Math. 28, No. 3, 277--287 (2020; Zbl 1473.26030) Full Text: DOI OpenURL
Baĭbulatova, G. D. Start control problem for a class of degenerate equations with lower order fractional derivatives. (Russian. English summary) Zbl 1470.49008 Chelyabinskiĭ Fiz.-Mat. Zh. 5, No. 3, 271-284 (2020). MSC: 49J20 34A08 PDF BibTeX XML Cite \textit{G. D. Baĭbulatova}, Chelyabinskiĭ Fiz.-Mat. Zh. 5, No. 3, 271--284 (2020; Zbl 1470.49008) Full Text: DOI MNR OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations. (English) Zbl 1474.34063 Math. Morav. 24, No. 1, 109-122 (2020). MSC: 34A09 34A08 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Math. Morav. 24, No. 1, 109--122 (2020; Zbl 1474.34063) Full Text: DOI OpenURL
Solodushkin, Svyatoslav; Gorbova, Tatiana; Pimenov, Vladimir Difference scheme for partial differential equations of fractional order with a nonlinear differentiation operator. (English) Zbl 1453.65232 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 689-703 (2020). MSC: 65M06 34K37 35R11 65M12 65H10 PDF BibTeX XML Cite \textit{S. Solodushkin} et al., Springer Proc. Math. Stat. 333, 689--703 (2020; Zbl 1453.65232) Full Text: DOI OpenURL
Plekhanova, Marina V.; Baybulatova, Guzel D. Strong solutions of semilinear equations with lower fractional derivatives. (English) Zbl 1451.34013 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 573-585 (2020). MSC: 34A08 34G10 49J20 PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{G. D. Baybulatova}, in: Transmutation operators and applications. Cham: Birkhäuser. 573--585 (2020; Zbl 1451.34013) Full Text: DOI OpenURL
Mazurenko, S. S. Viscosity solutions to evolution problems of star-shaped reachable sets. (English) Zbl 1403.34017 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 29, 23 p. (2018). Reviewer: Patrick Winkert (Berlin) MSC: 34A60 35D40 93B03 PDF BibTeX XML Cite \textit{S. S. Mazurenko}, NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 29, 23 p. (2018; Zbl 1403.34017) Full Text: DOI OpenURL