Kumar, Santosh; Aron, David Common fixed-point theorems for non-linear non-self contractive mappings in convex metric spaces. (English) Zbl 07661220 Topol. Algebra Appl. 11, Article ID 20220122, 12 p. (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Aron}, Topol. Algebra Appl. 11, Article ID 20220122, 12 p. (2023; Zbl 07661220) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Initial value problems for nonlinear Caputo fractional relaxation differential equations. (English) Zbl 07626847 Khayyam J. Math. 8, No. 1, 85-93 (2022). MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Khayyam J. Math. 8, No. 1, 85--93 (2022; Zbl 07626847) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 1493.45009 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 34A37 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 1493.45009) Full Text: DOI MNR OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and uniqueness of solutions for fractional relaxation integro-differential equations with boundary conditions. (English) Zbl 07524414 Facta Univ., Ser. Math. Inf. 37, No. 1, 211-221 (2022). MSC: 45J05 47N20 26A33 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 211--221 (2022; Zbl 07524414) Full Text: DOI OpenURL
Ait Hammou, Mustapha Weak solutions for fractional \(p(x,\cdot)\)-Laplacian Dirichlet problems with weight. (English) Zbl 1487.35389 Analysis, München 42, No. 2, 121-132 (2022). MSC: 35R11 35J25 35J92 35S15 47H11 PDF BibTeX XML Cite \textit{M. Ait Hammou}, Analysis, München 42, No. 2, 121--132 (2022; Zbl 1487.35389) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and Ulam stability for nonlinear Caputo-Hadamard fractional differential equations with three-point boundary conditions. (English) Zbl 1493.34026 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63-76 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63--76 (2022; Zbl 1493.34026) Full Text: Link OpenURL
Ardjouni, Abdelouaheb Existence results for a Caputo-Hadamard type fractional boundary value problem. (English) Zbl 1499.34029 Fract. Differ. Calc. 11, No. 2, 241-253 (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Ardjouni}, Fract. Differ. Calc. 11, No. 2, 241--253 (2021; Zbl 1499.34029) Full Text: DOI OpenURL
Budochkina, S. A.; Luu, T. H. On connection between variationality of a six-order ordinary differential equation and Hamilton-Ostrogradskii equations. (English) Zbl 1506.47085 Lobachevskii J. Math. 42, No. 15, 3594-3605 (2021). MSC: 47G40 70H05 34A55 PDF BibTeX XML Cite \textit{S. A. Budochkina} and \textit{T. H. Luu}, Lobachevskii J. Math. 42, No. 15, 3594--3605 (2021; Zbl 1506.47085) Full Text: DOI OpenURL
Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and Ulam stability results for fractional differential equations with mixed nonlocal conditions. (English) Zbl 1502.34009 Azerb. J. Math. 11, No. 2, 78-97 (2021). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Azerb. J. Math. 11, No. 2, 78--97 (2021; Zbl 1502.34009) Full Text: Link OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Initial value problems of nonlinear fractional differential equations with two orders. (English) Zbl 1487.34021 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 369-386 (2021). MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 369--386 (2021; Zbl 1487.34021) Full Text: DOI OpenURL
Boutiara, Abdellatif; Matar, Mohammed M.; Kaabar, Mohammed K. A.; Martínez, Francisco; Etemad, Sina; Rezapour, Shahram Some qualitative analyses of neutral functional delay differential equation with generalized Caputo operator. (English) Zbl 1476.34159 J. Funct. Spaces 2021, Article ID 9993177, 13 p. (2021). MSC: 34K37 34K40 34K30 34K10 47N20 34K27 PDF BibTeX XML Cite \textit{A. Boutiara} et al., J. Funct. Spaces 2021, Article ID 9993177, 13 p. (2021; Zbl 1476.34159) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations. (English) Zbl 1474.34063 Math. Morav. 24, No. 1, 109-122 (2020). MSC: 34A09 34A08 34D10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Math. Morav. 24, No. 1, 109--122 (2020; Zbl 1474.34063) Full Text: DOI OpenURL