Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions. (English) Zbl 1499.34066


34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A09 Implicit ordinary differential equations, differential-algebraic equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
Full Text: DOI


[1] S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electronic Journal of Differential Equations 2011(9) (2011), 1-11. · Zbl 1211.34096
[2] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Computers and Mathematics with Applications 59 (2010), 1095-1100. · Zbl 1189.34152
[3] B. Ahmad, S. K. Ntouyas, Initial-value problems for fractional differential equations, Electronic Journal of Differential Equations 2014(161) (2014), 1-8. · Zbl 1300.34012
[4] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics 4(4) (2019), 1101-1113. · Zbl 1484.34080
[5] A. Ardjouni, A. Djoudi, Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle, Ural Mathematical Journal 5(1) (2019), 3-12. · Zbl 1463.45028
[6] A. Ardjouni, A. Djoudi, Positive solutions for first-order nonlinear Caputo-Hadamard fractional relaxation differential equations, Kragujevac Journal of Mathematics 45(6) (2021), 897-908. · Zbl 1499.34170
[7] Z. Bai, S. Zhang, S.Sun, C. Yin, Monotone iterative method for fractional differential equations, Electron. J. Differential Equations 2016(06) (2016), 1-8. · Zbl 1329.34051
[8] M. Benchohra, S. Bouriah, M. A. Darwish, Nonlinear boundary value problem for implicit differential equations of fractional order in Banach spaces, Fixed Point Theory 18 (2017), 457-470. · Zbl 1386.34010
[9] M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with RiemannLiouville fractional derivative, Demonstratio Mathematica 52(1) (2019), 437-450. · Zbl 1431.34006
[10] M. Benchohra, S. Bouriah, J.J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 112 (2018), 25-35. · Zbl 1387.34004
[11] W. Benhamida, J. R. Graef and S. Hamani, Boundary value problems for fractional differential equations with integral and anti-periodic conditions in a Banach space, Prog. Frac. Differ. Appl 4(2) (2018), 1-7. · Zbl 1424.34012
[12] H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity 21 (2017), 1201- 1212. · Zbl 1377.26006
[13] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010. · Zbl 1215.34001
[14] S. Gala, Q. Liu, M. A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Applicable Analysis 91(9) (2012), 1741-1747. · Zbl 1253.35120
[15] S. Gala, M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Applicable Analysis 95(6) (2016), 1271-1279. · Zbl 1336.35289
[16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. · Zbl 1092.45003
[17] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. 74 (2011), 5975-5986. · Zbl 1235.34022
[18] K. D. Kucche, J. J. Nieto and V. Venktesh, Theory of nonlinear implicit fractional differential equations, Differential Equations and Dynamical Systems (2016), 1-17, doi.org/10.1007/s12591-016-0297-7. · Zbl 1442.34019
[19] M. Kratou, Ground state solutions of p-Laplacian singular Kirchho problem involving a Riemann-Liouville fractional derivative, Filomat 33(7) (2019), 2073-2088. · Zbl 1499.34063
[20] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677-2682. · Zbl 1161.34001
[21] D. Luo, Z. Luo, Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat 33(17) (2019), 5499-5510. · Zbl 1499.34068
[22] J. J. Nieto, A. Ouahab, V. Venktesh, Implicit fractional differential equations via the Liouville-Caputo derivative, Mathematics 3 (2015), 398-411. · Zbl 1322.34012
[23] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[24] Samina, K. Shah, R. A. Khan, D. Baleanu, Study of implicit type coupled system of non-integer order differential equations with antiperiodic boundary conditions, Mathematical Methods in the Applied Sciences 42(6) (2019), 2033-2042. · Zbl 1417.34022
[25] D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, Cambridge University Press, London-New York, 1974. · Zbl 0297.47042
[26] S. T. Sutar, K. D. Kucche, Global existence and uniqueness for implicit differential equations of arbitrary order, Fractional Differential Calculus 5(2) (2015), 199-208. · Zbl 1415.34028
[27] F. Wang, Existence and uniqueness of solutions for a nonlinear fractional differential equation, J. Appl. Math. Comput. 39(1-2) (2012), 53-67. · Zbl 1303.34006
[28] S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252 (2000), 804-812. · Zbl 0972.34004
[29] W. Zhang, W. Liu and T. Xue, Existence and uniqueness results for the coupled systems of implicit fractional differential equations with periodic boundary conditions, Advances in Difference Equations 2018 (2018), DOI: 10.1186/s13662-018-1867-5. · Zbl 1448.34031
[30] Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017 · Zbl 1360.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.