Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus. (English) Zbl 1473.26030

Summary: The aim of this paper is to synthesize discrete and continuous versions of some dynamic inequalities such as Radon’s Inequality, Bergström’s Inequality, Schlömilch’s Inequality and Rogers-Hölder’s Inequality on time scales in comprehensive form.


26D15 Inequalities for sums, series and integrals
26D20 Other analytical inequalities
34N05 Dynamic equations on time scales or measure chains
Full Text: DOI


[1] R.P. Agarwal, D. O’Regan, S.H. Saker: Dynamic Inequalities on Time Scales. Springer International Publishing, Cham, Switzerland (2014). · Zbl 1318.26002
[2] M.R.S. Ammi, D.F.M. Torres: Hölder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova, Math. Comp. Sci. Series 37 (1) (2010) 1-11. · Zbl 1212.26057
[3] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran: Nabla dynamic equations on time scales. Panam. Math. J. 13 (1) (2003) 1-48. · Zbl 1032.39007
[4] E.F. Beckenbach, R. Bellman: Inequalities. Springer, Berlin, Göttingen and Heidelberg (1961).
[5] R. Bellman: Notes on matrix theory - IV (An inequality due to Bergström). Amer. Math. Monthly 62 (3) (1955) 172-173. · Zbl 0064.01501
[6] H. Bergström: A triangle inequality for matrices. In Den Elfte Skandinaviske Matematikerkongress (1949) Trondheim, Johan Grundt Tanums Forlag, Oslo (1952) 264-267. · Zbl 0049.29501
[7] M. Bohner, A. Peterson: Dynamic Equations on Time Scales. Birkhäuser Boston, Inc., Boston, MA (2001). · Zbl 0993.39010
[8] M. Bohner, A. Peterson: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Boston, MA (2003). · Zbl 1025.34001
[9] D.M. Bătineţu-Giurgiu, O.T. Pop: A generalization of Radon’s inequality. Creative Math. & Inf. 19 (2) (2010) 116-121. · Zbl 1212.26037
[10] D.M. Bătineţu-Giurgiu, N. Stanciu: New generalizations and new approaches for two IMO problems. Journal of Science and Arts 12 (1) (2012) 25-34. · Zbl 1247.97036
[11] D.M. Bătineţu-Giurgiu, D. Mărghidanu, O.T. Pop: A refinement of a Radon type inequality. Creat. Math. Inform. 27 (2) (2018) 115-122. · Zbl 1463.26042
[12] G.H. Hardy, J.E. Littlewood, G. Pölya: Inequalities. 2nd Ed., Cambridge, University Press (1952). · Zbl 0047.05302
[13] S. Hilger: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg (1988). · Zbl 0695.34001
[14] O. Hölder: Über einen Mittelwertsatz. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen (1889) 38-47.
[15] D.S. Mitrinović: Analytic Inequalities. Springer-Verlag, Berlin (1970). · Zbl 0199.38101
[16] J. Radon: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien 122 (1913) 1295-1438. · JFM 44.0464.03
[17] M.J.S. Sahir: Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus. The Teaching of Mathematics XXI (1) (2018) 38-52.
[18] M.J.S. Sahir: Formation of versions of some dynamic inequalities unified on time scale calculus. Ural Math. J. 4 (2) (2018) 88-98. · Zbl 1448.26036
[19] Q. Sheng, M. Fadag, J. Henderson, J.M. Davis: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Appl. 7 (3) (2006) 395-413. · Zbl 1114.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.