Sahir, Muhammad Jibril Shahab Assembling classical and dynamic inequalities accumulated on calculus of time scales. (English) Zbl 1474.26133 Vestn. KRAUNTS, Fiz.-Mat. Nauki 33, No. 4, 26-36 (2020). Summary: In this paper, we present an extension of dynamic Renyi’s inequality on time scales by using the time scale Riemann-Liouville type fractional integral. Furthermore, we find generalizations of the well-known Lyapunov’s inequality and Radon’s inequality on time scales by using the time scale Riemann-Liouville type fractional integrals. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. MSC: 26D15 Inequalities for sums, series and integrals 26A33 Fractional derivatives and integrals 26E70 Real analysis on time scales or measure chains Keywords:time scales; fractional Riemann-Liouville integral; Renyi inequality; Lyapunov inequality; Radon inequality PDF BibTeX XML Cite \textit{M. J. S. Sahir}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 33, No. 4, 26--36 (2020; Zbl 1474.26133) Full Text: DOI MNR References: [1] Agarwal R. P., O’Regan D., Saker S. H., Dynamic Inequalities on Time Scales, Springer International Publishing, Cham, Switzerland, 2014 · Zbl 1318.26002 [2] Anastassiou G. A., “Principles of delta fractional calculus on time scales and inequalities”, Mathematical and Computer Modelling, 52:3-4 (2010), 556-566 · Zbl 1201.26001 [3] Anastassiou G. A., “Foundations of nabla fractional calculus on time scales and inequalities”, Computers \(\&\) Mathematics with Applications, 59:12 (2010), 3750-3762 · Zbl 1198.26033 [4] Anastassiou G. A., “Integral operator inequalities on time scales”, Internat. Journal of Difference Equations, 7:2 (2012), 111-137 [5] Anderson D., Bullock J., Erbe L., Peterson A., Tran H., “Nabla dynamic equations on time scales”, Pan-American. Math. J., 13:1 (2003), 1-47 · Zbl 1032.39007 [6] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhäuser Boston, Inc, Boston, MA, 2001 · Zbl 0978.39001 [7] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, 2003 · Zbl 1025.34001 [8] Bohner M., Luo H., “Singular second-order multipoint dynamic boundary value problems with mixed derivatives”, Advances in Difference Equations, 2006, 1-15, Article ID 54989 DOI 10.1155/ADE/2006/54989 · Zbl 1139.39024 [9] Hilger, S., Ein Ma \(\beta\) kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 · Zbl 0695.34001 [10] Li Y-C., Yeh C-C., “Some inequalities via convex functions with application: A survey”, Sci. Mathematicae Japonicae, 76:2 (2013), 313-341 · Zbl 1321.26043 [11] Liao W., Wu J., Zhao J., “New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant”, Taiwanese J. Math., 19:2 (2015), 467-479 · Zbl 1357.26048 [12] Mitrinović D. S., Analytic Inequalities, Springer-Verlag, Berlin, 1970 · Zbl 0199.38101 [13] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Acad. Wissen. Wien, 122 (1913), 1295-1438 · JFM 44.0464.03 [14] Sahir M. J. S., “Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus”, The Teaching of Mathematics, XXI:1 (2018), 38-52 [15] Sahir M. J. S., “Formation of versions of some dynamic inequalities unified on time scale calculus”, Ural Mathematical Journal, 4:2 (2018), 88-98 · Zbl 1448.26036 [16] Sahir M. J. S., “Symmetry of classical and extended dynamic inequalities unified on time scale calculus”, Turkish J. Ineq., 2:2 (2018), 11-22 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.