×

\(P_1\) finite element methods for a weighted elliptic state-constrained optimal control problem. (English) Zbl 1468.65204

Summary: We investigate a \(P_1\) finite element method for a two-dimensional weighted optimal control problem arising from a three-dimensional (3D) axisymmetric elliptic state-constrained optimal control problem with Dirichlet boundary conditions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49M41 PDE constrained optimization (numerical aspects)
49J20 Existence theories for optimal control problems involving partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Assous, F., Ciarlet, Jr., P., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49-78 (2002) · Zbl 0995.35070
[2] Belhachmi, Z.; Bernardi, C.; Deparis, S., Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem, Numer. Math., 105, 217-247 (2006) · Zbl 1107.65103 · doi:10.1007/s00211-006-0039-9
[3] Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains, Vol. 3 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques Et Médicales Elsevier, Paris. Numerical algorithms and tests due to Mejdi Azaïez (1999) · Zbl 0929.35001
[4] Brenner, S.; Gedicke, J.; Sung, L-Y, P1 finite element methods for an elliptic optimal control problems with pointwise state constraints, IMA J. Numer. Anal, 40, 1-28 (2020) · Zbl 1464.65061 · doi:10.1093/imanum/dry071
[5] Brenner, SC; Davis, CB; Sung, L-Y, A partition of unity method for a class of fourth order elliptic variational inequalities, Comput. Methods Appl. Mech. Eng., 276, 612-626 (2014) · Zbl 1425.65070 · doi:10.1016/j.cma.2014.04.004
[6] Brenner, S.C., Oh, M., Pollock, S., Porwal, K., Schedensack, M., Sharma, N.S.: A c^0 interior penalty method for elliptic distributed optimal control problems in three dimensions with pointwise state constraints, in Topics in Numerical Partial Differential Equations and Scientific Computing, vol. 160 of IMA Vol. Math. Appl., pp. 1-22. Springer, New York (2016) · Zbl 1384.65038
[7] Brenner, S. C., Oh, M., Sung, L.-Y.: P1 finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions, Results in Appl. Math. doi:10.1016/j.rinam.2019.100090 (2020) · Zbl 1443.49007
[8] Brenner, SC; Sung, L-Y, A new convergence analysis of finite element methods for elliptic distributed optimal control problems with pointwise state constraints, SIAM, J. Control Optim., 55, 2289-2304 (2017) · Zbl 1370.49006 · doi:10.1137/16M1088090
[9] Brenner, SC; Sung, L-Y; Zhang, Y., Post-processing procedures for an elliptic distributed optimal control problem with pointwise state constraints, Appl. Numer. Math., 95, 99-117 (2015) · Zbl 1320.65169 · doi:10.1016/j.apnum.2015.03.001
[10] Brenner, SC; Sung, L-Y; Zhang, Y., C0 interior penalty methods for an elliptic state-constrained optimal control problem with Neumann boundary condition, J. Comput. Appl. Math., 350, 212-232 (2019) · Zbl 1524.65763 · doi:10.1016/j.cam.2018.10.015
[11] Caffarelli, LA; Friedman, A., The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6, 151-184 (1979) · Zbl 0405.31007
[12] Casas, E.; Mateos, M.; Vexler, B., New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20, 803-822 (2014) · Zbl 1293.49044 · doi:10.1051/cocv/2013084
[13] Ciarlet, Jr., P., Jung, B., Kaddouri, S., Labrunie, S., Zou, J.: The F,ourier singular complement method for the Poisson problem. I. Prismatic domains. Numer. Math. 101, 423-450 (2005) · Zbl 1084.65123
[14] Ciarlet, PG, The Finite Element Method for Elliptic Problems (1978), Amsterdam: North-Holland Publishing Company, Amsterdam · Zbl 0383.65058
[15] Dauge, M., Elliptic Boundary Value Problems on Corner Domains, Vol. 1341 of Lecture Notes in Mathematics (1988), Berlin: Springer, Berlin · Zbl 0668.35001
[16] Deckelnick, K.; Hinze, M., Convergence of a finite element approximation to a state-constrained elliptic control problem, SIAM J. Numer. Anal., 45, 1937-1953 (2007) · Zbl 1154.65055 · doi:10.1137/060652361
[17] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems, Vol. 28 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics. (SIAM), Philadelphia. Translated from the French (1999) · Zbl 0939.49002
[18] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press (2015), Boca Raton: FL, revised ed., Boca Raton · Zbl 1310.28001
[19] Grisvard, P., Elliptic problems in nonsmooth domains, vol. 69 of Classics in Applied Mathematics (2011), Philadelphia: Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 1231.35002 · doi:10.1137/1.9781611972030
[20] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE constraints, Vol. 23 of Mathematical Modelling: Theory and Applications (2009), New York: Springer, New York · Zbl 1167.49001
[21] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, vol. 31 of Classics in Applied Mathematics (2000), Philadelphia: Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 0988.49003 · doi:10.1137/1.9780898719451
[22] Liu, W.; Gong, W.; Yan, N., A new finite element approximation of a state-constrained optimal control problem, J. Comput. Math., 27, 97-114 (2009) · Zbl 1199.49067
[23] Maz’ya, V.; Rossmann, J., Elliptic Equations in Polyhedral Domains, Vol. 162 of Mathematical Surveys and Monographs (2010), Providence: American Mathematical Society, Providence · Zbl 1196.35005 · doi:10.1090/surv/162
[24] Meyer, C., Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybernet., 37, 51-83 (2008) · Zbl 1170.65055
[25] Rudin, W., Real and Complex Analysis (1987), New York: McGraw-Hill Book Co., New York · Zbl 0925.00005
[26] Schwartz, L.: Théorie Des Distributions, Publications De l’Institut De MathéMatique De L’université De Strasbourg, No. IX-X. Nouvelle éDition, EntiéRement CorrigéE, Refondue Et Augmentée, Hermann (1966) · Zbl 0149.09501
[27] Tröltzsch, F.: Optimal Control of Partial Differential Equations, Vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.