Convergence to a steady state for asymptotically autonomous semilinear heat equations on \(\mathbb R^N\). (English) Zbl 1263.35035

The authors treat semilinear parabolic equations of the form \[ u_t=\Delta u+f(u)+h(x,t),\qquad(x,t)\in\mathbb{R}^N\times(0,\infty), \tag{1} \] that are asymptotically autonomous in the sense that \(\|h(\cdot,t)\|_\infty\to0\) as \(t\to\infty\). Here \(f\) is assumed to be continuously differentiable and to satisfy \(f(0)=0\) and \(f'(0)<0\). Consider a global, bounded and nonnegative solution \(u\) of (1) that decays in \(x\), uniformly in \(t\): \[ \lim_{|x|\to\infty}\sup_{t>0}u(x,t)=0. \] Define its \(\omega\)-limit set in a suitable Banach space of states by \[ \omega(u):=\{v: u(\cdot,t_k)\to v\text{ for some sequence } t_k\to\infty\}. \] A positive solution of \(\Delta u+f(u)=0\) on \(\mathbb{R}^N\) that decays to \(0\) as \(|x|\to\infty\) is called a ground state. A ground state is always radially symmetric about some point and radially decaying.
Under these assumptions it is shown that either \(\omega(u)=\{0\}\) or that \(\omega(u)\) consists entirely of ground states. If in addition \(h(\cdot,t)\) decays exponentially in a suitable Hölder class, then either \(\omega(u)=\{0\}\) or \(\omega(u)\) consists of exactly one ground state. Since \[ \lim_{t\to\infty}\text{dist}_\infty(u(\cdot,t),\omega(u))=0, \] these results yield, respectively, quasiconvergence and convergence of \(u\) in the \(L^\infty\)-sense.


35B40 Asymptotic behavior of solutions to PDEs
35K58 Semilinear parabolic equations
35B09 Positive solutions to PDEs
35B07 Axially symmetric solutions to PDEs
Full Text: DOI


[1] Aulbach, B., Continuous and Discrete Time Dynamics Near Manifolds of Equilibria (1984), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0535.34002
[2] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029
[3] Brunovský, P.; Poláčik, P., On the local structure of \(ω\)-limit sets of maps, Z. Angew. Math. Phys., 48, 976-986 (1997) · Zbl 0889.34048
[4] Busca, J.; Jendoubi, M.-A.; Poláčik, P., Convergence to equilibrium for semilinear parabolic problems in \(R^N\), Comm. Partial Differential Equations, 27, 1793-1814 (2002) · Zbl 1021.35013
[5] Chen, C.-C.; Lin, C.-S., Uniqueness of the ground state solutions of \(\Delta u + f(u) = 0\) in \(R^n, n \geqslant 3\), Comm. Partial Differential Equations, 16, 1549-1572 (1991) · Zbl 0753.35034
[6] Chen, X.-Y.; Poláčik, P., Gradient-like structure and Morse decompositions for time-periodic one-dimensional parabolic equations, J. Dynam. Differential Equations, 7, 73-107 (1995) · Zbl 0822.35073
[7] Chill, R., On the Łojasiewicz-Simon gradient inequality, J. Funct. Anal., 201, 2, 572-601 (2003) · Zbl 1036.26015
[8] Chill, R.; Haraux, A.; Jendoubi, M. A., Applications of the Łojasiewicz-Simon gradient inequality to gradient-like evolution equations, Anal. Appl. (Singap.), 7, 4, 351-372 (2009) · Zbl 1192.34068
[9] Chill, R.; Jendoubi, M. A., Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal., 53, 1017-1039 (2003) · Zbl 1033.34066
[10] Chill, R.; Jendoubi, M. A., Convergence to steady states of solutions of non-autonomous heat equations in \(R^N\), J. Dynam. Differential Equations, 19, 3, 777-788 (2007) · Zbl 1166.35005
[11] Cortázar, C.; del Pino, M.; Elgueta, M., The problem of uniqueness of the limit in a semilinear heat equation, Comm. Partial Differential Equations, 24, 2147-2172 (1999) · Zbl 0940.35107
[12] Du, Y.; Matano, H., Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc. (JEMS), 12, 279-312 (2010) · Zbl 1207.35061
[13] Fašangová, E., Asymptotic analysis for a nonlinear parabolic equation on \(R\), Comment. Math. Univ. Carolin., 39, 525-544 (1998) · Zbl 0963.35080
[14] Fašangová, E.; Feireisl, E., The long-time behavior of solutions to parabolic problems on unbounded intervals: the influence of boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 129, 319-329 (1999) · Zbl 0933.35101
[15] Feireisl, E.; Petzeltová, H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations, 10, 181-196 (1997) · Zbl 0879.35023
[16] Feireisl, E.; Poláčik, P., Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on R, Adv. Differential Equations, 5, 583-622 (2000) · Zbl 0987.35079
[17] Flores, J. G., On a threshold of codimension 1 for the Nagumo equation, Comm. Partial Differential Equations, 13, 1235-1263 (1988) · Zbl 0665.35034
[18] Földes, J., Symmetry of positive solutions of asymptotically symmetric parabolic problems on \(R^N\), J. Dynam. Differential Equations, 23, 45-69 (2011) · Zbl 1222.35013
[19] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\), (Mathematical Analysis and Applications, Part A (1981), Academic Press: Academic Press New York), 369-402 · Zbl 0469.35052
[20] Hale, J. K.; Raugel, G., Convergence in gradient-like systems with applications to PDE, J. Appl. Math. Phys. (ZAMP), 43, 63-124 (1992) · Zbl 0751.58033
[21] Hempel, R.; Voigt, J., The spectrum of Schrödinger operators in \(L_p(R^d)\) and in \(C_0(R^d)\), (Demuth, M.; etal., Mathematical Results in Quantum Mechanics: International Conference Blossin. Mathematical Results in Quantum Mechanics: International Conference Blossin, Germany, 1993 (1994), Birkhäuser: Birkhäuser Basel), 63-72 · Zbl 0822.47002
[22] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0456.35001
[23] Huang, S.-Z.; Takáč, P., Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46, 5, 675-698 (2001) · Zbl 1002.35022
[24] Hurley, M., Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7, 437-456 (1995) · Zbl 0832.34041
[25] Jones, C., Spherically symmetric solutions of a reaction-diffusion equation, J. Differential Equations, 49, 142-169 (1983), MR704268 (84h:35084) · Zbl 0523.35059
[26] Kwong, M. K., Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(R^n\), Arch. Ration. Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032
[27] Ladyzhenskaya, O. A.; Solonnikov, V. A.; Urallʼceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23 (1967), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI: Nauka: Amer. Math. Soc.: Amer. Math. Soc. Providence, RI: Nauka Moscow, Russian original: · Zbl 0164.12302
[28] Li, C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations, 16, 585-615 (1991) · Zbl 0741.35014
[29] Li, Y.; Ni, W.-M., Radial symmetry of positive solutions of nonlinear elliptic equations in \(R^n\), Comm. Partial Differential Equations, 18, 1043-1054 (1993) · Zbl 0788.35042
[30] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0884.35001
[31] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Birkhäuser: Birkhäuser Berlin · Zbl 0816.35001
[32] Mischaikow, K.; Smith, H.; Thieme, H. R., Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347, 5, 1669-1685 (1995) · Zbl 0829.34037
[33] Poláčik, P., Symmetry properties of positive solutions of parabolic equations on \(R^N\): II. Entire solutions, Comm. Partial Differential Equations, 31, 1615-1638 (2006) · Zbl 1128.35051
[34] Poláčik, P., Threshold solutions and sharp transitions for nonautonomous parabolic equations on \(R^N\), Arch. Ration. Mech. Anal., 199, 69-97 (2011) · Zbl 1262.35130
[35] Simon, L., Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math., 118, 525-571 (1983) · Zbl 0549.35071
[36] (Zabreiko, P. P.; etal., Integral Equations: A Reference Text (1975), Noordhoff International Publ.: Noordhoff International Publ. Leyden)
[37] Zlatoš, A., Sharp transition between extinction and propagation of reaction, J. Amer. Math. Soc., 19, 251-263 (2006) · Zbl 1081.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.