Del Pino, Manuel; Kowalczyk, Michal; Wei, Jun-Cheng Concentration on curves for nonlinear Schrödinger equations. (English) Zbl 1123.35003 Commun. Pure Appl. Math. 60, No. 1, 113-146 (2007). Suppose that \(p>1\) and \(V\colon\mathbb R^N\to\mathbb R\) is smooth and such that \(\inf_{x\in\mathbb R^N}V(x)>0\). In the well known article [A. Ambrosetti, A. Malchiodi, and W.-M. Ni, Commun. Math. Phys. 235, No. 3, 427–466 (2003; Zbl 1072.35019)] it is proved that the problem \[ -\varepsilon^2 \Delta u + V(x) u=u^p\tag{1} \]possesses positive spike layer solutions concentrating near spheres of radius \(r_0\) as \(\varepsilon\to0\) if \(V\) is radially symmetric and if the function \(r\mapsto r^{N-1}V^\sigma(r)\) has a strict local extremum at \(r_0\), with \(\sigma:=\frac{p+1}{p-1}-\frac12\). Without imposing the condition of radial symmetry on \(V\), the present work generalizes that result in the case \(N=2\) (and proves a related conjecture exposed in that article) to the existence of positive solutions of (1) concentrating near nondegenerate closed geodesics of the weighted metric \(V^\sigma(dx_1^2+dx_2^2)\) in \(\mathbb R^2\). Here it has to be assumed that \(\varepsilon\) is small enough and satisfies a gap condition \[ | \varepsilon^2k^2-\lambda_*| \geq c\varepsilon,\qquad\forall k\in\mathbb N, \]with some constants \(c,\lambda_*>0\). This condition implies bounds for the inverse of a linear differential operator that arises in the finite dimensional reduction. Reviewer: Nils Ackermann (México, D.F.) Cited in 121 Documents MSC: 35B25 Singular perturbations in context of PDEs 35J60 Nonlinear elliptic equations 35Q55 NLS equations (nonlinear Schrödinger equations) 47F05 General theory of partial differential operators Keywords:spike layer solution; semiclassical limit; standing wave Citations:Zbl 1072.35019 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alikakos, Calc Var Partial Differential Equations 11 pp 233– (2000) [2] Ambrosetti, Arch Rational Mech Anal 140 pp 285– (1997) [3] Ambrosetti, Comm Math Phys 235 pp 427– (2003) [4] Ambrosetti, Arch Ration Mech Anal 159 pp 253– (2001) [5] Badiale, Nonlinear Anal 49 pp 947– (2002) [6] Benci, J Differential Equations 184 pp 109– (2002) [7] Byeon, Arch Ration Mech Anal 165 pp 295– (2002) [8] Cingolani, J Differential Equations 160 pp 118– (2000) [9] del Pino, Calc Var Partial Differential Equations 4 pp 121– (1996) [10] del Pino, J Funct Anal 149 pp 245– (1997) [11] del Pino, Ann Inst H Poincaré Anal Non Linéaire 15 pp 127– (1998) [12] del Pino, Math Ann 324 pp 1– (2002) [13] Felmer, Commun Contemp Math 4 pp 481– (2002) [14] Floer, J Funct Anal 69 pp 397– (1986) [15] Grossi, Ann Inst H Poincaré Anal Non Linéaire 19 pp 261– (2002) [16] Gui, Comm Partial Differential Equations 21 pp 787– (1996) [17] Jeanjean, Calc Var Partial Differential Equations 21 pp 287– (2004) · Zbl 1060.35012 · doi:10.1007/s00526-003-0261-6 [18] Kang, Adv Differential Equations 5 pp 899– (2000) [19] Approximate invariant manifold of the Allen-Cahn flow in two dimensions. Partial differential equations and inverse problems, 233–239. Contemporary Mathematics, 362. American Mathematical Society, Providence, R.I., 2004. · doi:10.1090/conm/362/06616 [20] Kowalczyk, Ann Mat Pura Appl (4) 184 pp 17– (2005) [21] ; Sturm-Liouville and Dirac operators. Mathematics and Its Applications (Soviet Series), 59. Kluwer Academic Publishers Group, Dordrecht, 1991. · doi:10.1007/978-94-011-3748-5 [22] Li, Adv Differential Equations 2 pp 955– (1997) [23] Lin, J Differential Equations 72 pp 1– (1988) [24] Malchiodi, C R Math Acad Sci Paris 338 pp 775– (2004) · Zbl 1081.35044 · doi:10.1016/j.crma.2004.03.023 [25] Malchiodi, Geom Funct Anal 15 pp 1162– (2005) [26] Malchiodi, Comm Pure Appl Math 55 pp 1507– (2002) [27] Malchiodi, Duke Math J 124 pp 105– (2004) [28] ; Foliations by mean curvature sets. Preprint, 2005. [29] Ni, Comm Pure Appl Math 44 pp 819– (1991) [30] Ni, Duke Math J 70 pp 247– (1993) [31] Oh, Comm Math Phys 121 pp 11– (1989) [32] Oh, Comm Math Phys 131 pp 223– (1990) [33] Pacard, J Differential Geom 64 pp 359– (2003) [34] Rabinowitz, Z Angew Math Phys 43 pp 270– (1992) [35] Shatah, J Differential Equations 186 pp 572– (2002) [36] Sirakov, Ann Mat Pura Appl (4) 181 pp 73– (2002) [37] Wang, Comm Math Phys 153 pp 229– (1993) [38] Wang, J Differential Equations 159 pp 102– (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.