A multiplicity theorem for a variable exponent Dirichlet problem. (English) Zbl 1154.35041

If \(N\in\mathbb{N}\) and \(\Omega\subseteq\mathbb{R}^N\) is a bounded domain with smooth boundary, consider the problem
\[ \begin{aligned} -\text{div}(| \nabla u| ^{p(x)-2}\nabla u)= m(x)| u| ^{q-2}u + f(x,u),&\quad\text{in }\Omega,\\ u=0,&\quad\text{on }\partial\Omega, \end{aligned}\tag{1} \] where \(p\in C^1(\overline{\Omega})\), \(\min_{\overline{\Omega}}p>q>1\), \(m\in L^\infty(\Omega)\backslash\{0\}\), \(m\geq0\), and \(f\) is a Carathéodory function with subcritical growth in a suitable sense, with respect to the variable exponent \(p(x)\). The authors prove the existence of three classical solutions to (1) that are ordered, and such that one solution is negative and one positive. The method consists in a combination of the sub-supersolution technique and the Mountain Pass Theorem applied to a suitably truncated functional. One should compare this result with the recent article by J. Yao [Nonlinear Anal., Theory Methods Appl. 68, No. 5 (A), 1271–1283 (2008; Zbl 1158.35046)], where a similar result is achieved under Neumann boundary conditions and with a different set of hypotheses, including the Ambrosetti-Rabinowitz condition.


35J60 Nonlinear elliptic equations
35J70 Degenerate elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35J20 Variational methods for second-order elliptic equations
35B50 Maximum principles in context of PDEs


Zbl 1158.35046
Full Text: DOI


[1] DOI: 10.1016/S0362-546X(97)00628-7 · Zbl 0927.46022 · doi:10.1016/S0362-546X(97)00628-7
[2] DOI: 10.1112/S0024610705006952 · Zbl 1161.35405 · doi:10.1112/S0024610705006952
[3] DOI: 10.1016/S0022-1236(02)00103-9 · Zbl 1091.35028 · doi:10.1016/S0022-1236(02)00103-9
[4] DOI: 10.1016/j.jde.2007.01.008 · Zbl 1143.35040 · doi:10.1016/j.jde.2007.01.008
[5] DOI: 10.1016/j.jde.2004.03.019 · Zbl 1079.35035 · doi:10.1016/j.jde.2004.03.019
[6] DOI: 10.1016/j.jmaa.2006.07.093 · Zbl 1206.35103 · doi:10.1016/j.jmaa.2006.07.093
[7] DOI: 10.1016/j.jfa.2006.11.015 · Zbl 1231.35085 · doi:10.1016/j.jfa.2006.11.015
[8] DOI: 10.1017/S0017089506003144 · Zbl 1387.35289 · doi:10.1017/S0017089506003144
[9] DOI: 10.1155/S1085337502207010 · Zbl 1106.35308 · doi:10.1155/S1085337502207010
[10] Mawhin, Critical point theory and Hamilton systems (1989) · doi:10.1007/978-1-4757-2061-7
[11] DOI: 10.1016/j.jde.2003.08.001 · Zbl 1087.35034 · doi:10.1016/j.jde.2003.08.001
[12] DOI: 10.1112/S0024609304004023 · Zbl 1122.35033 · doi:10.1112/S0024609304004023
[13] DOI: 10.1016/j.jmaa.2005.04.034 · Zbl 1148.35321 · doi:10.1016/j.jmaa.2005.04.034
[14] DOI: 10.1007/s00205-002-0208-7 · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[15] Kov??ik, Czechosloval Math. J. 41 pp 592– (1991)
[16] DOI: 10.1016/S0022-247X(03)00165-3 · Zbl 1146.35358 · doi:10.1016/S0022-247X(03)00165-3
[17] DOI: 10.1016/S0362-546X(02)00150-5 · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.