×

Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators. (English) Zbl 1457.91151

Summary: The partitioned Bonferroni mean (PBM) operator can efficiently aggregate inputs, which are divided into parts based on their interrelationships. To date, it has not been used to aggregate linguistic Pythagorean fuzzy numbers (LPFNs). In this paper, we extend the PBM operator and partitioned geometric Bonferroni mean (PGBM) operator to the linguistic Pythagorean fuzzy sets (LPFSs) and use them to develop a novel multiattribute group decision-making model under the linguistic Pythagorean fuzzy environment. We first define some novel operational laws for LPFNs, which take into consideration the interactions between the membership degree (MD) and nonmembership degree (NMD) from two different LPFNs. Based on these novel operational laws, we put forward the interaction PBM (LPFIPBM) operator, the weighted interaction PBM (LPFWIPBM) operator, the interaction PGBM (LPFIPGBM) operator, and the weighted interaction PGBM (LPFWIPGBM) operator. Then, we study some properties of these proposed operators and discuss their special cases. Based on the proposed LPFWIPBM and LPFWIPGBM operators, a novel multiattribute group decision-making model is developed to process the linguistic Pythagorean fuzzy information. Finally, some illustrative examples are introduced to compare our proposed methods with the existing ones.

MSC:

91B06 Decision theory
90B50 Management decision making, including multiple objectives
91B86 Mathematical economics and fuzziness
91F20 Linguistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feng, Q.; Guo, X., A novel approach to fuzzy soft set-based group decision-making, Complexity, 2018, 12 (2018) · Zbl 1398.91179
[2] Lin, M. W.; Xu, Z. S.; Zhai, Y. L.; Yao, Z. Q., Multi-attribute group decision-making under probabilistic uncertain linguistic environment, Journal of the Operational Research Society, 69, 2, 157-170 (2018)
[3] Zhang, L.; Meng, F., An approach to interval-valued hesitant fuzzy multiattribute group decision making based on the generalized Shapley-Choquet integral, Complexity, 2018 (2018) · Zbl 1398.91214
[4] Meng, F.; Tang, J.; Li, C., Uncertain linguistic hesitant fuzzy sets and their application in multi-attribute decision making, International Journal of Intelligent Systems, 33, 3, 586-614 (2018) · doi:10.1002/int.21957
[5] Zadeh, L. A., Fuzzy sets, Information and Computation, 8, 338-353 (1965) · Zbl 0139.24606
[6] Zhou, W.; Xu, Z., Extended Intuitionistic Fuzzy Sets Based on the Hesitant Fuzzy Membership and their Application in Decision Making with Risk Preference, International Journal of Intelligent Systems, 33, 2, 417-443 (2018) · doi:10.1002/int.21938
[7] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 1, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[8] Liu, P.; Chen, S.-M., Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers, IEEE Transactions on Cybernetics, 47, 9, 2514-2530 (2017) · doi:10.1109/TCYB.2016.2634599
[9] Yager, R. R.; Abbasov, A. M., Pythagorean membership grades, complex numbers, and decision making, International Journal of Intelligent Systems, 28, 5, 436-452 (2013) · doi:10.1002/int.21584
[10] Yager, R. R., Pythagorean membership grades in multicriteria decision making, IEEE Transactions on Fuzzy Systems, 22, 4, 958-965 (2014) · doi:10.1109/TFUZZ.2013.2278989
[11] Liu, P.; Liu, J., Some q-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making, International Journal of Intelligent Systems, 33, 2, 315-347 (2018) · doi:10.1002/int.21933
[12] Liu, P.; Wang, P., Multiple-Attribute Decision Making based on Archimedean Bonferroni Operators of q-Rung Orthopair Fuzzy Numbers, IEEE Transactions on Fuzzy Systems (2018) · doi:10.1109/TFUZZ.2018.2826452
[13] Wang, H.; Xu, Z.; Zeng, X.-J., Hesitant fuzzy linguistic term sets for linguistic decision making: Current developments, issues and challenges, Information Fusion, 43, 1-12 (2018) · doi:10.1016/j.inffus.2017.11.010
[14] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning I, Information Sciences, 8, 199-249 (1975) · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[15] Xu, Z.; Wang, H., On the syntax and semantics of virtual linguistic terms for information fusion in decision making, Information Fusion, 34, 43-48 (2017) · doi:10.1016/j.inffus.2016.06.002
[16] Turksen, I. B., Type 2 representation and reasoning for CWW, Fuzzy Sets and Systems, 127, 1, 17-36 (2002) · Zbl 1006.68134 · doi:10.1016/S0165-0114(01)00150-6
[17] Herrera, F.; Martínez, L., A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Transactions on Fuzzy Systems, 8, 6, 746-752 (2000) · doi:10.1109/91.890332
[18] Rodriguez, R. M.; Martinez, L.; Herrera, F., Hesitant fuzzy linguistic term sets for decision making, IEEE Transactions on Fuzzy Systems, 20, 1, 109-119 (2012) · doi:10.1109/TFUZZ.2011.2170076
[19] Garg, H., Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, International Journal of Intelligent Systems (2018)
[20] Zhang, H. M., Linguistic intuitionistic fuzzy sets and application in MAGDM, Journal of Applied Mathematics, 2014 (2014) · Zbl 1442.91029 · doi:10.1155/2014/432092
[21] Sahin, R.; Kucuk, G. D., Group decision making with simplified neutrosophic ordered weighted distance operator, Mathematical Methods in the Applied Sciences, 41, 2, 4795-4809 (2018) · Zbl 06923756
[22] Wei, G. W.; Lu, M.; Tang, X. Y.; Wei, Y., Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, International Journal of Intelligent Systems, 33, 6, 1197-1233 (2018)
[23] Xu, Z. S., Choquet integrals of weighted intuitionistic fuzzy information, Information Sciences, 180, 5, 726-736 (2010) · Zbl 1186.68469 · doi:10.1016/j.ins.2009.11.011
[24] Zhang, X.; Liu, P.; Wang, Y., Multiple attribute group decision making methods based on intuitionistic fuzzy frank power aggregation operators, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 29, 5, 2235-2246 (2015) · Zbl 1361.91040 · doi:10.3233/IFS-151699
[25] Wang, F.; Zeng, S.; Zhang, C., A method based on intuitionistic fuzzy dependent aggregation operators for supplier selection, Mathematical Problems in Engineering (2013) · Zbl 1296.91090
[26] Zhu, B.; Xu, Z.; Xia, M., Hesitant fuzzy geometric Bonferroni means, Information Sciences, 205, 72-85 (2012) · Zbl 1250.91035 · doi:10.1016/j.ins.2012.01.048
[27] He, Y.; He, Z.; Chen, H., Extensions of atanassov’s intuitionistic fuzzy interaction bonferroni means and their application to multiple-attribute decision making, IEEE Transactions on Fuzzy Systems, 24, 3, 558-573 (2016) · doi:10.1109/TFUZZ.2015.2460750
[28] Liu, P.; Chen, S.-M.; Liu, J., Multiple attribute group decision making based on intuitionistic fuzzy interaction partitioned Bonferroni mean operators, Information Sciences, 411, 98-121 (2017) · Zbl 1429.91114 · doi:10.1016/j.ins.2017.05.016
[29] Liang, D.; Darko, A. P.; Xu, Z., Interval-valued Pythagorean fuzzy extended Bonferroni mean for dealing with heterogenous relationship among attributes, International Journal of Intelligent Systems (2018)
[30] Dutta, B.; Guha, D., Partitioned Bonferroni mean based on linguistic 2-tuple for dealing with multi-attribute group decision making, Applied Soft Computing, 37, 166-179 (2015) · doi:10.1016/j.asoc.2015.08.017
[31] Teng, F.; Liu, Z.; Liu, P., Some power Maclaurin symmetric mean aggregation operators based on Pythagorean fuzzy linguistic numbers and their application to group decision making, International Journal of Intelligent Systems (2018)
[32] Liu, P.; Liu, J.; Merigó, J. M., Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for dealing with multi-attribute group decision making, Applied Soft Computing, 62, 395-422 (2018) · doi:10.1016/j.asoc.2017.10.017
[33] Xu, Z. S., A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Information Sciences, 166, 1-4, 19-30 (2004) · Zbl 1101.68849 · doi:10.1016/j.ins.2003.10.006
[34] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation functions: A guide for practitioners (2007), Berlin, Germany: Springer, Berlin, Germany · Zbl 1123.68124
[35] Bonferroni, C., Sulle medie multiple di potenze, Bollettino della Unione Matematica Italiana, 5, 267-270 (1950) · Zbl 0040.02302
[36] Liang, D.; Zhang, Y.; Xu, Z.; Darko, A. P., Pythagorean fuzzy Bonferroni mean aggregation operator and its accelerative calculating algorithm with the multithreading, International Journal of Intelligent Systems, 33, 3, 615-633 (2018) · doi:10.1002/int.21960
[37] Zhang, R.; Wang, J.; Zhu, X.; Xia, M.; Yu, M., Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making, Complexity, 2017 (2017) · Zbl 1375.91062
[38] Liu, P.; Liu, X., Multiattribute Group Decision Making Methods Based on Linguistic Intuitionistic Fuzzy Power Bonferroni Mean Operators, Complexity, 2017 (2017) · Zbl 1367.93022 · doi:10.1155/2017/3571459
[39] Gao, H.; Wei, G.; Huang, Y., Dual Hesitant Bipolar Fuzzy Hamacher Prioritized Aggregation Operators in Multiple Attribute Decision Making, IEEE Access, 6, 11508-11522 (2017) · doi:10.1109/ACCESS.2017.2784963
[40] Fan, C.; Song, Y.; Fu, Q.; Lei, L.; Wang, X., New Operators for Aggregating Intuitionistic Fuzzy Information With Their Application in Decision Making, IEEE Access, 6, 27214-27238 (2018) · doi:10.1109/ACCESS.2018.2832206
[41] Meng, F. Y.; Tang, J.; An, Q. X.; Chen, X. H., Decision making with intuitionistic linguistic preference relations, International Transactions in Operational Research
[42] Meng, F.; Tan, C.; Chen, X., Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study, OMEGA - The International Journal of Management Science, 68, 17-38 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.