×

Stochastic dynamo model for subcritical transition. (English) Zbl 1244.76118

Summary: The effects of stochastic perturbations in a nonlinear \(\alpha\Omega\)-dynamo model are investigated. By using transformation of variables we identify a ‘slow’ variable that determines the global evolution of the non-normal \(\alpha\Omega\)-dynamo system in the subcritical case. We apply an adiabatic elimination procedure to derive a closed stochastic differential equation for the slow variable for which the dynamics is determined along one of the eigenvectors of the full system. We derive the corresponding Fokker-Planck equation and show that the generation of a large-scale magnetic field can be regarded as a first-order phase transition. We show that an advantage of the reduced system is that we have explicit expressions for both the stochastic and the deterministic potentials. We also obtain the stationary solution of the Fokker-Planck equation and show that an increase in the intensity of the multiplicative noise leads to qualitative changes in the stationary probability density function (pdf). The latter can be interpreted as a noise-induced phase transition. By a numerical simulation of the stochastic galactic dynamo model, we show that the qualitative behavior of the ‘empirical’ stationary pdf of the slow variable is accurately predicted by the stationary pdf of the reduced system.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M35 Stochastic analysis applied to problems in fluid mechanics
76F55 Statistical turbulence modeling
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/RevModPhys.72.603 · doi:10.1103/RevModPhys.72.603
[2] P. J. Schmid, in: Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[3] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[4] DOI: 10.1103/PhysRevE.50.3705 · doi:10.1103/PhysRevE.50.3705
[5] DOI: 10.1063/1.868606 · Zbl 1039.76509 · doi:10.1063/1.868606
[6] Ya. B. Zeldovich, in: Magnetic Fields in Astrophysics (1983)
[7] A. A. Ruzmaikin, in: Magnetic Fields in Galaxies (1988) · doi:10.1017/S0252921100067385
[8] DOI: 10.1086/307663 · doi:10.1086/307663
[9] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[10] DOI: 10.1103/PhysRevLett.72.1188 · doi:10.1103/PhysRevLett.72.1188
[11] DOI: 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2 · doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
[12] DOI: 10.1063/1.1398044 · Zbl 1184.76042 · doi:10.1063/1.1398044
[13] DOI: 10.1103/RevModPhys.74.775 · doi:10.1103/RevModPhys.74.775
[14] P. Hoyng, Astron. Astrophys. 289 pp 265– (1994) ISSN: http://id.crossref.org/issn/0004-6361
[15] DOI: 10.1086/303504 · doi:10.1086/303504
[16] DOI: 10.1103/PhysRevE.68.067301 · doi:10.1103/PhysRevE.68.067301
[17] DOI: 10.1103/PhysRevE.66.066310 · doi:10.1103/PhysRevE.66.066310
[18] DOI: 10.1016/j.physa.2004.05.084 · doi:10.1016/j.physa.2004.05.084
[19] C. W. Gardiner, in: Handbook of Stochastic Methods (1996)
[20] W. Horsthemke, in: Noise-Induced Transitions (1984) · Zbl 0529.60085 · doi:10.1007/978-3-642-70196-2_23
[21] J. Guckenheimer, in: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983) · Zbl 0515.34001
[22] DOI: 10.1007/BF01008325 · Zbl 0512.60047 · doi:10.1007/BF01008325
[23] DOI: 10.1007/BF01018837 · Zbl 0587.58033 · doi:10.1007/BF01018837
[24] DOI: 10.1016/0375-9601(87)90833-4 · doi:10.1016/0375-9601(87)90833-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.