×

Nanoemitters in a defect layer embedded in photonic crystals: synthesis and optical characterization. (English) Zbl 1419.78015

Summary: Manipulation of the emission of nanocrystals embedded in photonic crystals can provide a single photon source for quantum information.
Artificial opals are 3D photonic crystals whose synthesis is based on self-assembly of dielectric spheres. This cost-efficient and versatile method does not require a high technological platform and leads to nanostructured samples over the cm range. In order to obtain light confinement inside opals, several fabrication methods have been used to create a defect. Artificial opals with a planar defect can be considered as a good “model system” to study the modification of the optical properties of nanoemitters in a photonic crystal.
We will present two efficient and reliable methods to engineer a defect between two silica opals: by sputtering a controlled amount of silica or by the transfer of a monolayer of silica spheres of different diameter by the Langmuir-Blodgett or Schaefer technique. The optical properties of the prepared samples were characterized by transmission and specular reflection spectra. Tunable and highly transmitted and reflected optical modes were evidenced, in good agreement with Finite Difference Time Domain simulations (FDTD).
Colloidal II-VI nanocrystals are efficient and stable emitters which can emit single photons. These nanoemitters were introduced in the defect. The collected fluorescence of these nanocrystals presents an emission diagram which is modified by the photonic crystal and especially by the defect layer.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
82D25 Statistical mechanics of crystals
82D80 Statistical mechanics of nanostructures and nanoparticles
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: Link

References:

[1] V.N. Astratov, Yu.A. Vlasov, O.Z. Karimov, A.A. Kaplyanskii, YU.G. Musikhin, N.A. Bert, V.N. Bogomolov, and A.V. Prokofiev. Physics Letters A, 222:349, 1996.
[2] A. Avoine, P. Hong, H. Frederich, J.-M.Frigerio, L. Coolen, C. Schwob, Pham Thu Nga, B. Gallas, and A. Maitre. Phys. Rev. B, 86:1, 2012.
[3] A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat. Phys. Sol. State, 45:459, 2003.
[4] A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov. Phys. Sol. State, 46:1331, 2004.
[5] A. V. Baryshev, A.B. Khanikaev, R. Fujikawa, H. Uchida, and M. Inoue. Phys. Rev. B, 76:014305, 2007.
[6] A. G. Bazhenova, A. V. Sel’kin, A. Yu. Men’shikova, and N. N. Shevchenko. Phys. Sol. State, 49:2109, 2007.
[7] P.V. Braun, R.W. Zehner, C.A. White, M.K. Weldon, C. Kloc, S.S. Patel, and P. Wiltzius. Advanced Materials, 13:721, 2001.
[8] M. Campbell, D.N. Sharp, M. T. Harrison, R.G. Denning, and A.J. Turberfield. Nature, 404:53, 2000.
[9] M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Bush, and C. M. Soukoulis. Nature Materials, 3:444, 2004.
[10] I. Divliansky, T.S. Mayer, K. S. Holiday, and V. Crespi. Applied Physics Letters, 82:1667, 2003.
[11] F. Fleischhaker, A. C. Arsenault, V. Kitaev, F.C. Peiris, G. von Freymann, I. Manners, R. Zentel, and G.A. Ozin. J. Am. Chem. Soc., 127:9318, 2005.
[12] J.G. Fleming and Shawn-Yu Lin. Optics letters, 24:49, 1999.
[13] J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. Sanchez-Dehesa. Appl. Phys. Lett., 82:4068, 2003. Nanoemitters in a defect layer embedded in photonic crystals43
[14] P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin. Chemical Materials, 11:2132, 1999.
[15] Ngoc Diep Lai, Wen Ping Liang, Jian Hung Lin, Chia Chen Hsu, and Cheng Hsiung Lin. Optics Express, 13:9605, 2005.
[16] P. Lodahl, F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos. Nature, 430:654, 2004.
[17] F. Lopez-Tejeira, T. Ochiai, K. Sakoda, and J. Sanchez-Dehesa.Phys. Rev. B, 65:195110, 2002.
[18] M. Megens, J.E.G. Wijnhoven, A. Lagendijk, and W.L. Vos. Phys. Rev. A, 59:4727, 1999.
[19] H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vasquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud. Applied Physics Letters, 71:1148, 1997.
[20] H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J.S. Moya, and L. Vasquez. Langmuir, 13:6009, 1997.
[21] Y. V. Miklyaev, D.C. Meisel, A. Blanco, G. von Freymann, K. Bush, W. Koch, C. Enkrich, M. Deubel, and M. Wegener. Applied Physics Letters, 82:1284, 2003.
[22] V. Mizeikis, K. Khuen Seet, S. Juodkazis, and H. Mizawa. Optics Letters, 29:2061, 2004.
[23] A. V. Moroz, M. F. Limonov, M. V. Rybin, and K. B. Samusev. Phys. Sol. State, 53:1105, 2011.
[24] R. V. Nair and B. N. Jagatap. Phys. Rev. A, 85:013829, 2012.
[25] I.S. Nikolaev, P. Lodahl, A.F. van Driel, A.F. Koenderink, and W.L. Vos. Phys. Rev. B, 75:115302, 2007.
[26] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson. Computer Physics Communications, 181:687, 2010.
[27] E. Palacios-Lidon, J. F. Galisteo-Lopez, B. H. Juarez, and C. Lopez. Advanced Materials, 16:341, 2004.
[28] A. Qualtieri, G. Morello, P. Spinicelli, M. Todaro, T. Stomeo, L. Martiradonna, M. De Giorgi, X. Quelin, S. Buil, A. Bramati, J-P. Hermier, R. Cingolani, and M. De Vittorio. New Journal of Physics, 11:033025, 2009.
[29] S. Reculusa and S. Ravaine. Chem. Mater, 15:598, 2003.
[30] S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin. Phys. Rev. E, 63:056603, 2001. 44Hong P. N. et al
[31] V. Solovyev. Journal of Applied Physics, 94:1205, 2003.
[32] W. Stober, A. Fink, and E. Bohn. J. of Colloid and Interface Science, 69:62, 1968.
[33] H. B Sun, S. Matsuo, and H. Misawa. Applied Physics Letters, 74:786, 1999.
[34] M. Szekeres, O. Kamalin, R.A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dekany. J. of Mater. Chem., 12:3268, 2002.
[35] A. Tikhonov, J. Bohn, and S. A. Asher. Phys. Rev. B, 80:235125, 2009.
[36] N. Tretreault, A.C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G.A. Ozin. Advanced Materials, 17:1912, 2005.
[37] N. Tretreault, A. Mihi, H. Miguez, I. Rodriguez, G.A. Ozin, F. Meseguer, and V. Kitaev. Advanced Materials, 16:346, 2004.
[38] H. M. van Driel and W. L. Vos. Phys. Rev. B, 62:9872, 2000.
[39] C. Vion, C. Barthou, P. Benalloul, C. Schwob, L. Coolen, A. Gruzintev, G. Emelaechenko, W. Masalov, J.-M. Frigerio, and A. Maitre. J. Appl. Phys., 105:113120, 2009.
[40] Y. A. Vlasov, Xiang-Zheng Bo, J.C. Sturm, and D. J. Norris. Nature, 414:289, 2001.
[41] S. Wong, V. Kitaev, and G.A. Ozin. J. Am. Chem. Soc., 125:15589, 2003.
[42] K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons. Langmuir, 19:4465, 2003.
[43] Y. Zhao, K. Wostyn, G. de Schaetzen, K. Clays, L. Hellemans, A. Persoons, M. Szekeres, and R.A. Schoonheydt. Applied Physics Letters, 82:3764, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.