×

Investigation of through-thickness stresses in composite laminates using layerwise theory. (English) Zbl 1334.74009

Summary: In this study, an analytical method is developed to exactly obtain the interlaminar stresses near the free edges of laminated composite plates under the bending moment based on the reduced form of elasticity displacement field for a long laminate. The analytical and numerical studies were performed based on the Reddy’s layerwise theory for the boundary layer stresses within cross-ply, symmetric, angle-ply, and general composite laminates. Finally, a variety of numerical results are presented for the interlaminar normal and shear stresses along the interfaces and through thickness of laminates near the free edges. The results showed high stress gradient of interlaminar normal and shear stresses near the edges of laminates.

MSC:

74A40 Random materials and composite materials
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Composite Structures 49 (1) pp 65– (2000) · doi:10.1016/S0263-8223(99)00126-9
[2] Journal of Composite Materials 4 pp 204– (1970) · doi:10.1177/002199837000400206
[3] Journal of Composite Materials 8 pp 65– (1974) · doi:10.1177/002199837400800106
[4] DOI: 10.1177/002199837701100405 · doi:10.1177/002199837701100405
[5] Journal of Composite Materials 9 (1) pp 42– (1975) · doi:10.1177/002199837500900105
[6] Journal of Applied Mechanics 41 (3) pp 668– (1974) · doi:10.1115/1.3423368
[7] International Journal of Solids and Structures 14 (5) pp 385– (1978) · Zbl 0377.73079 · doi:10.1016/0020-7683(78)90020-3
[8] Journal of Applied Mechanics v 49 (3) pp 541– (1982)
[9] Journal of Applied Mechanics 61 (2) pp 410– (1994) · Zbl 0818.73047 · doi:10.1115/1.2901459
[10] Journal of Composite Materials 11 (1) pp 92– (1977) · doi:10.1177/002199837701100110
[11] Computers and Structures 15 (1) pp 23– (1982) · doi:10.1016/0045-7949(82)90030-X
[12] AIAA Journal 34 (12) pp 2604– (1996) · Zbl 0900.73437 · doi:10.2514/3.13445
[13] DOI: 10.1002/nme.492 · Zbl 1098.74686 · doi:10.1002/nme.492
[14] DOI: 10.1002/nme.493 · Zbl 1098.74687 · doi:10.1002/nme.493
[15] DOI: 10.1016/j.compscitech.2007.10.055 · doi:10.1016/j.compscitech.2007.10.055
[16] International Journal for Numerical Methods in Engineering 36 (4) pp 655– (1993) · Zbl 0770.73089 · doi:10.1002/nme.1620360407
[17] DOI: 10.1016/j.msea.2007.10.122 · doi:10.1016/j.msea.2007.10.122
[18] DOI: 10.1016/j.compstruct.2007.12.002 · doi:10.1016/j.compstruct.2007.12.002
[19] DOI: 10.1016/j.commatsci.2011.02.005 · doi:10.1016/j.commatsci.2011.02.005
[20] Composites A 54 pp 182– (2013) · Zbl 0366.35029 · doi:10.1016/j.compositesa.2013.07.015
[21] Composite Structures 104 pp 196– (2013) · Zbl 1122.74523 · doi:10.1016/j.compstruct.2013.04.002
[22] DOI: 10.1016/j.compstruct.2012.08.032 · doi:10.1016/j.compstruct.2012.08.032
[23] DOI: 10.1016/j.apm.2008.03.008 · Zbl 1205.74028 · doi:10.1016/j.apm.2008.03.008
[24] (2001)
[25] (1981)
[26] AIAA Journal 31 (12) pp 2335– (1993) · Zbl 0793.73052 · doi:10.2514/3.11933
[27] (1998)
[28] Journal of Applied Mechanics 80 (4) pp 1– (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.