×

A note on hydrodynamics from dissipative particle dynamics. (English) Zbl 1380.82008

Summary: We calculate current correlation functions (CCFs) of dissipative particle dynamics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To facilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent generalized hydrodynamics.

MSC:

82-08 Computational methods (statistical mechanics) (MSC2010)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1959), Oxford · Zbl 0146.22405
[2] Batchelor, G. K. An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967) · Zbl 0152.44402
[3] Noid, W. G. Perspective: coarse-grained models for biomolecular systems. Journal of Chemical Physics, 139(9), 090901 (2013)
[4] Succi, S. The lattice Boltzmann equation: for fluid dynamics and beyond. Numerical Mathematics and Scientific Computations, Oxford University Press, Oxford (2001) · Zbl 0990.76001
[5] Dünweg, B.; Ladd, A. J. C.; Holm, C. (ed.); Kremer, K. (ed.), Lattice Boltzmann Simulations of Soft Matter Systems, 89-166 (2009), Berlin
[6] Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155-160 (1992)
[7] Espa˜nol, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191-196 (1995)
[8] Malevanets, A. and Kapral, R. Mesoscopic model for solvent dynamics. Journal of Chemical Physics, 110(17), 8605-8613 (1999)
[9] Gompper, G.; Ihle, T.; Kroll, D. M.; Winkler, R. G.; Holm, C. (ed.); Kremer, K. (ed.), Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, 1-87 (2009), Berlin
[10] Lyubartsev, A. P. and Laaksonen, A. Calculation of effective interaction potentials from radial distribution functions: a reverse monte carlo approach. Physical Review E, 52, 3730-3737 (1995)
[11] Reith, D., Pütz, M., and Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. Journal of Computational Chemistry, 24(13), 1624-1636 (2003)
[12] Ercolessi, F. and Adams, J. B. Interatomic potentials from first-principles calculations: the forcematching method. Europhysics Letters, 26(8), 9306054 (1994)
[13] Izvekov, S. and Voth, G. A. Multiscale coarse graining of liquid-state systems. Journal of Chemical Physics, 123(13), 134105 (2005)
[14] Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. Journal of Chemical Physics, 129(14), 144108 (2008)
[15] Zwanzig, R. Ensemble method in the theory of irreversibility. Journal of Chemical Physics, 33(5), 1338-1341 (1960)
[16] Mori, H. Transport, collective motion, and Brownian motion. Progress of Theoretical Physics, 33, 423-455 (1965) · Zbl 0127.45002
[17] Koelman, J. M. V. A. and Hoogerbrugge, P. J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhysics Letters, 21, 363-368 (1993)
[18] Groot, R. D. and Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11), 4423-4435 (1997)
[19] Yamamoto, S., Maruyama, Y., and Hyodo, S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. Journal of Chemical Physics, 116(13), 5842-5849 (2002)
[20] Fan, X., Phan-Thien, N., Yong, N. T., Wu, X., and Xu, D. Microchannel flow of a macromolecular suspension. Physics of Fluids, 15, 11-21 (2003) · Zbl 1185.76121
[21] Pivkin, I. V. and Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters, 101, 118105 (2008)
[22] Fedosov, D. A., Caswell, B., and Karniadakis, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98, 2215-2225 (2010)
[23] Espa˜nol, P. and Warren, P. B. Perspective: dissipative particle dynamics. Journal of Chemical Physics, 146(15), 150901 (2017) · Zbl 1094.80503
[24] Li, Z.; Li, X.; Bian, X.; Deng, M.; Tang, Y. H.; Caswell, B.; Karniadakis, G. E., Dissipative particle dynamics: foundation, evolution, implementation, and applications (2017), Berlin · Zbl 1387.35496
[25] Kinjo, T. and Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic description. Physical Review E, 75, 051109 (2007) · Zbl 1113.81328
[26] Lei, H., Caswell, B., and Karniadakis, G. E. Direct construction of mesoscopic models from microscopic simulations. Physical Review E, 81, 026704 (2010)
[27] Hijón, C., Espa˜nol, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss, 144, 301-322 (2010)
[28] Li, Z., Bian, X. Caswell, B., and Karniadakis, G. E. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 10, 8659-8672 (2014)
[29] Espa˜nol, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67(2), 026705 (2003)
[30] Vázquez-Quesada, A., Ellero, M., and Espa˜nol, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79(5), 056707 (2009)
[31] Marsh, C. A., Backx, G., and Ernst, M. H. Fokker-Planck-Boltzmann equation for dissipative particle dynamics. Europhysical Letters, 38(6), 411-415 (1997)
[32] Espa˜nol, P. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52(2), 1734-1742 (1995)
[33] Ripoll, M., Ernst, M. H., and Espa˜nol, P. Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115, 7271-7284 (2001)
[34] Bian, X., Li, Z., Deng, M., and Karniadakis, G. E. Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: thermal equilibrium. Physical Review E, 92, 053302 (2015)
[35] Azarnykh, D., Litvinov, S., Bian, X., and Adams, N. A. Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent. Physical Review E, 93, 013302 (2016)
[36] Vázquez-Quesada, A., Ellero, M., and Espa˜nol, P. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. Journal of Chemical Physics, 130(3), 034901 (2009)
[37] Hansen, J. P. and McDonald, I. R. Theory of Simple Liquids, 4th ed., Elsevier, Burlington (2013) · Zbl 1277.00030
[38] Boon, J. P. and Yip, S. Molecular Hydrodynamics, Dover Publications, New York (1991)
[39] Zwanzig, R. Memory effects in irreversible thermodynamics. Physical Review, 124, 983-992 (1961) · Zbl 0131.45006
[40] Kawasaki, K. Simple derivations of generalized linear and nonlinear Langevin equations. Journal of Physics A: Mathematical Nuclear and General, 6, 1289-1295 (1973)
[41] Nordholm, S. and Zwanzig, R. A systematic derivation of exact generalized Brownian motion theory. Journal of Statistical Physics, 13(4), 347-371 (1975)
[42] Weeks, J. D., Chandler, D., and Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. Journal of Chemical Physics, 54(12), 5237-5247 (1971)
[43] Kremer, K. and Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. Journal of Chemical Physics, 92(8), 5057-5086 (1990)
[44] Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford (2010) · Zbl 1232.82002
[45] Backer, J. A., Lowe, C. P., Hoefsloot, H. C. J., and Iedema, P. D. Poiseuille flow to measure the viscosity of particle model fluids. Journal of Chemical Physics, 122, 154503 (2005)
[46] Li, Z., Bian, X., Yang, X., and Karniadakis, G. E. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. Journal of Chemical Physics, 145(4), 044102 (2016)
[47] Lei, H., Yang, X., Li, Z., and Karniadakis, G. E. Systematic parameter inference in stochastic mesoscopic modeling. Journal of Computational Physics, 330, 571-593 (2017)
[48] Kirkwood, J. G. The statistical mechanical theory of transport processes, i. general theory. Journal of Chemical Physics, 14(3), 180-201 (1946)
[49] Berne, B. J. and Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, Dover Publications, New York (2000)
[50] Espa˜nol, P. Fluid particle model. Physical Review E, 57(3), 2930-2948 (1998)
[51] Berne, B. J. Statistical Mechanics, Part B: Time-dependet Process, chapter 5, Plenum Press, New York, 233-257 (1977)
[52] Kreyszig, E. Advanced Engineering Mathematics, 10th ed., John Wiley & Sons, Hoboken (2011) · Zbl 1229.00004
[53] Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Physical Review E, 49, 359-366 (1994)
[54] Li, Z., Bian, X., Li, X., and Karniadakis, G. E. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 143(24), 243128 (2015)
[55] Li, Z., Lee, H., Darve, E., and Karniadakis, G. E. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: application to polymer melts. Journal of Chemical Physics, 146, 014104 (2017)
[56] Lei, H., Baker, N. A., and Li, X. Data-driven parameterization of the generalized Langevin equation. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14183-14188 (2016) · Zbl 1407.62320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.