×

Some results on Haar wavelets matrix through linear algebra. (English) Zbl 1412.15001

Summary: Can we characterize the wavelets through linear transformation? The answer for this question is certainly YES. In this paper, we characterize the Haar wavelet matrix by their linear transformation and prove some theorems on properties of Haar wavelet matrix such as trace, eigenvalue and eigenvector and diagonalization of a matrix.

MSC:

15A03 Vector spaces, linear dependence, rank, lineability
15A04 Linear transformations, semilinear transformations
15A18 Eigenvalues, singular values, and eigenvectors
PDFBibTeX XMLCite

References:

[1] J. Astola and L. Yaroslavsky, Advances in Signal Transforms:Theory and Applications, Hindawi Publishing Corporation, 2007. · Zbl 1205.94009
[2] P. Chang and P. Piau, Haar wavelet matrices designation in numerical solution of ordinary differential equations, Int. J. Appl. Math., 38 (2008), 3-11. · Zbl 1229.42037
[3] C.F. Chen and C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc., Control Theory Appl., 144 (1997), 87-94. · Zbl 0880.93014
[4] C. Capilla, Application of the haar wavelet transform to detect microseismic signal arrivals, Journal of Applied Geophysics, 59 (2006), 36-46.
[5] M.D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl., 10 (1975), 285-290. · Zbl 0327.15018
[6] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. · Zbl 0776.42018
[7] J. Eisenfeld, Block diagonalization and eigenvalues, Linear Algebra Appl., 15 (1976), 205-215. · Zbl 0359.15007
[8] G. Hariharan and K. Kannan, An overview of haar wavelet method for solving differential and integral equations, World Applied Sciences Journal, 23(12) (2013), 01-14.
[9] M.H. Heydaria and F.M. Maalek Ghainia, Legendre wavelets method for numerical solution of time-fractional heat equation, Wavel. Linear Algebra, 1 (2014), 19-31.
[10] R.D. HILL, Linear transformations which preserve hermitian matrices, Linear Algebra Appl., 6 (1973), 257-262. · Zbl 0252.15012
[11] C.H. Hsiao, Haar wavelet approach to linear stiff systems, Math. Comput. Simul., 64 (2004), 561-567. · Zbl 1039.65058
[12] I. Aziz and S.U. Islam, New algorithms for the numerical solution of nonlinear fredholm and volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333-345. · Zbl 1255.65235
[13] R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of burger’s equation, Comput. Phys. Commun., 183 (2012), 2413-2423. · Zbl 1302.35337
[14] R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burger’s Equation, Comput. Phys. Commun., 188 (2015), 59-67. · Zbl 1344.65082
[15] K. Nouri, Application of shannon wavelet for solving boundary value problems of fractional differential equations, Wavel. Linear Algebra, 1 (2014), 33-42. · Zbl 1369.65092
[16] U. Lepik, Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. Comput., 185 (2007), 695-704. · Zbl 1110.65097
[17] U. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul., 68 (2005), 127-143. · Zbl 1072.65102
[18] U. Lepik, H. Hein, Haar Wavelets With Applications, Springer International publishing, 2014. · Zbl 1287.65146
[19] M. Marcus, Linear transformations on matrices, Journal of research of the notional bureau of standards-B. Mathematical sciences, 75B (1971), 107-113. · Zbl 0244.15013
[20] J. K. Merikoski, P.H. George and S.H. Wolkowicz, Bounds for ratios of eigenvalues using traces, Linear Algebra Appl., 55 (1983), 105-124. · Zbl 0522.15008
[21] A. Mohammed, M. Balarabe and A.T. Imam, Rhotrix linear transformation, Advances in Linear Algebra and Matrix Theory, 2 (2012), 43-47.
[22] R.K. Mallik, The inverse of a tridiagonal matrix, Linear Algebra Appl., 325 (2001), 109-139. · Zbl 0980.15004
[23] U. Saeed and M. Rehman, Haar wavelet quasilinearization technique for fractional nonlinear differential equations, Appl. Math. Comput., 220 (2013), 630-648. · Zbl 1329.65173
[24] S.C. Shiralashetti and A.B. Deshi, An effective Haar wavelet collocation method for the numerical solution of multiterm fractional differential equation, Nonlinear Dyn., 83 (2016), 293-303.
[25] S.C. Shiralashetti, A.B. Deshi and P.B. Mutalik Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Engineering Journal, 7 (2016), 663-670.
[26] S.C. Shiralashetti, L.M. Angadi, A.B. Deshi and M.H. Kantli, Haar wavelet method for the numerical solution of Klein-Gordan equations, Asian-Eur. J. Math., 9(1), (2016) 1-14. · Zbl 1338.65215
[27] S.C. Shiralashetti, M.H. Kantli and A.B. Deshi, Haar wavelet based numerical solution of nonlinear differential equations arising in fluid dynamics, International Journal of Computational Materials Science and Engineering, 5(2) (2016), 1-13.
[28] S.C. Shiralashetti, L.M. Angadi, A.B. Deshi and M.H. Kantli, Haar wavelet method for the numerical solution of Benjamin-Bona-Mahony equations, Journal of Information and Computing Sciences, 11(2) (2016), 136-145. · Zbl 1338.65215
[29] S.C. Shiralashetti, L.M. Angadi, M.H. Kantli and A.B. Deshi, Numerical solution of parabolic partial differential equations using adaptive gird Haar wavelet collocation method, Asian-Eur. J. Math., 10(1) (2017), 1-11. · Zbl 06770294
[30] S.C. Shiralashetti, A.B. Deshi, S.S. Naregal and B. Veeresh, Wavelet series solutions of the nonlinear emden-flower type equations, International Journal of Scientific and Innovative Mathematical Research, 3(2) (2015), 558-567.
[31] S.C. Shiralashetti, P.B. Mutalik Desai and A. B. Deshi, A comparative study of finite element method and Haar wavelet collocation method for the numerical solution of nonlinear ordinary differential equations, International Journal of Modern Mathematical Sciences, 13(3) (2015), 228-250.
[32] S.U. Islam, I. Aziz, A. Fhaid and A. Shah, A numerical assessment of parabolic partial differential equations using Haar and legendre wavelets, Appl. Math. Modelling, 37 (2013), 9455-9481. · Zbl 1427.65302
[33] S.U. Islam, I. Aziz, and A.S. Al-Fhaid, An improved method based on Haar wavelets for numerical solution of nonlinear integral and Integro-differential equations of first and higher orders, J. Comput. Appl. Math., 260 (2014), 449-469. · Zbl 1293.65173
[34] G. Strang, Linear Algebra and Its Applications, Cengage Learning, (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.