×

Modeling the wind circulation around Mills with a Lagrangian stochastic approach. (English) Zbl 1416.76242

Summary: This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [F. Bernardin et al., “Stochastic downscaling methods: application to wind refinement”, Stoch. Environ. Res. Risk Assess. 23, No. 6, 851–859 (2009; doi:10.1007/s00477-008-0276-9)] and [F. Bernardin et al., ESAIM, Math. Model. Numer. Anal. 44, No. 5, 885–920 (2010; Zbl 1426.76628)] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. First, for validation purpose we compare some numerical experiments against wind tunnel measurements. Second we perform some numerical experiments at the atmospheric scale and present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method.

MSC:

76M28 Particle methods and lattice-gas methods
86-08 Computational methods for problems pertaining to geophysics
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
76U05 General theory of rotating fluids
86A10 Meteorology and atmospheric physics

Citations:

Zbl 1426.76628
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I.H. Abbott & A.E. von Doenhoff, Theory of Wing Sections, Dover Publications, 1959
[2] M. Bergmann & A. Iollo, Numerical simulation of horizontal-axis wind turbine (HAWT), In International Conference on Computational Fluid Dynamics (ICCFD7), 2012
[3] F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau & T. Salameh, “Stochastic Downscaling Methods : Application to Wind Refinement”, Stoch. Environ. Res. Risk. Assess.23 (2009) no. 6 · Zbl 1416.65027 · doi:10.1007/s00477-008-0276-9
[4] F. Bernardin, M. Bossy, C. Chauvin, J-F. Jabir & A. Rousseau, “Stochastic Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics”, ESAIM: M2AN44 (2010) no. 5, p. 885-920 · Zbl 1426.76628 · doi:10.1051/m2an/2010046
[5] M. Bossy, J. Fontbona, P-E. Jabin & J-F. Jabir, “Local Existence of Analytical Solutions to an Incompressible Lagrangian Stochastic Model in a Periodic Domain”, Communications in Partial Differential Equations38 (2013) no. 7, p. 1141-1182 · Zbl 1274.35384 · doi:10.1080/03605302.2013.786727
[6] M. Bossy & J.-F. Jabir, “Lagrangian stochastic models with specular boundary condition”, Journal of Functional Analysis268 (2015) no. 6, p. 1309 -1381 · Zbl 1325.60113 · doi:10.1016/j.jfa.2014.11.016
[7] P. Carlotti, “Two-Point Properties Of Atmospheric Turbulence Very Close To The Ground: Comparison Of A High Resolution Les With Theoretical Models”, Boundary-Layer Meteorology104 (2002) no. 3, p. 381-410 · doi:10.1023/A:1016544705265
[8] L.P. Chamorro & F. Porté-Agel, “Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study”, Boundary-Layer Meteorology136 (2010) no. 3, p. 515-533 · doi:10.1007/s10546-010-9512-1
[9] P. Drobinski, Wind and Solar Renewable Energy Potential Resources Estimation, Encyclopedia of Life Support Systems, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, 2014
[10] P. Drobinski, P. Carlotti, J.-L. Redelsperger, V. Masson, R.M. Banta & R.K. Newsom, “Numerical and experimental investigation of the neutral atmospheric surface layer”, J. Atmos. Sci.64 (2007), p. 137-156 · doi:10.1175/JAS3831.1
[11] P.-A. Durbin & C.-G. Speziale, “Realizability of second-moment closure via stochastic analysis”, J. Fluid Mech.280 (1994), p. 395-407 · Zbl 0822.76044 · doi:10.1017/S0022112094002983
[12] A. El Kasmi & C. Masson, “An extended model for turbulent flow through horizontal-axis wind turbines”, Journal of Wind Engineering and Industrial Aerodynamics96 (2008) no. 1, p. 103 -122 · doi:10.1016/j.jweia.2007.03.007
[13] A. Hallanger & I.Ø. Sand, “CFD Wake Modelling with a BEM Wind Turbine Sub-Model”, Modeling, Identification and Control34 (2013) no. 1, p. 19-33 · doi:10.4173/mic.2013.1.3
[14] M. Hansen, Aerodynamics of wind turbines, Earthscan, London, 2008
[15] D.C. Haworth, “Progress in probability density function methods for turbulent reacting flows”, Progress in Energy and Combustion Science36 (2010) no. 2, p. 168 -259 · doi:10.1016/j.pecs.2009.09.003
[16] A. Kebaier, “Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing”, The Annals of Applied Probability15 (2005) no. 4, p. 2681-2705 · Zbl 1099.65011 · doi:10.1214/105051605000000511
[17] P.M. Lafore et al, “The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations”, Annales Geophysicae16 (1998), p. 90-109 · doi:10.1007/s00585-997-0090-6
[18] J.F. Manwell, J.G. McGowan & A.L. Rogers, Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, Ltd, 2002 · doi:10.1002/0470846127.fmatter_indsub
[19] I. Masters, R. Malki, A.J. Williams & T.N. Croft, A Modified k-epsilon Turbulence Model for Tidal Stream Turbine Simulations Using a Coupled BEM-CFD Model, ICOE, 2012 · Zbl 06950295
[20] R. Mikkelsen, Actuator Disc Methods Applied to Wind Turbines, Doctoral dissertation, Technical University of Denmark, 2003
[21] J.-P. Minier & E. Peirano, “The pdf approach to turbulent polydispersed two-phase flows”, Physics Reports352 (2001) no. 1-3, p. 1-214 · Zbl 0971.76039 · doi:10.1016/S0370-1573(01)00011-4
[22] J.-P. Minier, E. Peirano & S. Chibbaro, “Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling”, Monte Carlo Methods and Applications9 (2003) no. 2, p. 129-135 · Zbl 1112.65305 · doi:10.1515/156939603322663312
[23] J.-P. Minier & J. Pozorski, “Wall-boundary conditions in probability density function methods and application to a turbulent channel flow”, Physics of Fluids11 (1999) no. 9, p. 2632-2644 · Zbl 1149.76482 · doi:10.1063/1.870125
[24] S.B. Pope, “Lagrangian pdf methods for turbulent flows”, Annu. Rev. Fluid Mech.26 (1994), p. 23-63 · Zbl 0802.76033 · doi:10.1146/annurev.fl.26.010194.000323
[25] S.B. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000 · Zbl 0966.76002
[26] F. Porté-Agel, Hao Lub & Y.-T. Wu, A large-eddy simulation framework for wind energy applications, in In the Fifth International Symposium on Computational Wind Engineering (CWE2010), 2010
[27] P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983), Lecture Notes in Math. 1127, Springer, 1985, p. 243-324 · Zbl 0598.76003
[28] P.E. Réthoré, N.N. Sørensen, A. Bechmann & F. Zahle, Study of the atmospheric wake turbulence of a CFD actuator disc model, in In Proceedings of European Wind Energy Conference, 16-19 March, 2009
[29] H. Schmidt & U. Schumann, “Coherent structure of the convective boundary layer derived from large-eddy simulations”, J. Fluid Mech. (1989) · Zbl 0659.76065 · doi:10.1017/S0022112089000753
[30] J.N. Sørensen & A. Myken, “Unsteady actuator disc model for horizontal axis wind turbines”, Journal of Wind Engineering and Industrial Aerodynamics39 (1992) no. 1-3, p. 139 -149 · doi:10.1016/0167-6105(92)90540-Q
[31] S. Sunada, A. Sakaguchi & K. Kawachi, “Airfoil Section Characteristics at a Low Reynolds Number”, ASME. J. Fluids Eng.119 (1997) no. 1, p. 129-135 · doi:10.1115/1.2819098.
[32] Y.-T. Wu & F. Porté-Agel, “Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations”, Boundary-Layer Meteorology138 (2011) no. 3, p. 345-366 · doi:10.1007/s10546-010-9569-x
[33] Y.-T. Wu & F. Porté-Agel, “Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects”, Boundary-Layer Meteorology146 (2013) no. 2, p. 181-205 · doi:10.1007/s10546-012-9757-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.