Aminov, Behzod R.; Chilin, Vladimir I. Isometries of real subspaces of self-adjoint operators in Banach symmetric ideals. (English) Zbl 1463.46089 Vladikavkaz. Mat. Zh. 21, No. 4, 11-24 (2019). MSC: 46L52 46B04 47L20 PDF BibTeX XML Cite \textit{B. R. Aminov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 21, No. 4, 11--24 (2019; Zbl 1463.46089) Full Text: DOI MNR OpenURL
Alimov, Akrom A.; Chilin, Vladimir I. 2-local isometries of non-commutative Lorentz spaces. (English) Zbl 1463.46087 Vladikavkaz. Mat. Zh. 21, No. 4, 5-10 (2019). MSC: 46L52 46B04 PDF BibTeX XML Cite \textit{A. A. Alimov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 21, No. 4, 5--10 (2019; Zbl 1463.46087) Full Text: DOI MNR OpenURL
Ber, Alekseĭ Feliksovich; Chilin, Vladimir Ivanovich; Sukochev, Fëdor Anatol’evich Derivations on Banach \(*\)-ideals in von Neumann algebras. (English) Zbl 1463.46095 Vladikavkaz. Mat. Zh. 20, No. 2, 23-28 (2018). MSC: 46L57 46L51 46L52 47B47 PDF BibTeX XML Cite \textit{A. F. Ber} et al., Vladikavkaz. Mat. Zh. 20, No. 2, 23--28 (2018; Zbl 1463.46095) Full Text: DOI MNR OpenURL
Ayupov, Sh. A.; Chilin, V. I.; Ganikhodzhaev, R. N.; Muminov, K. K.; Artikbaev, A.; Zakirov, B. S.; Alimov, A.; Kudaĭbergenov, K. K.; Mukhamedov, F.; Bekboev, U.; Rakhimov, I. To the memory of Inomzhon Gulomzhonovich Ganiev. (Russian. English summary) Zbl 1463.01031 Vladikavkaz. Mat. Zh. 20, No. 1, 98-102 (2018). MSC: 01A70 PDF BibTeX XML Cite \textit{Sh. A. Ayupov} et al., Vladikavkaz. Mat. Zh. 20, No. 1, 98--102 (2018; Zbl 1463.01031) Full Text: MNR OpenURL
Aminov, Behzod Rasulovich; Chilin, Vladimir Ivanovich The uniqueness of the symmetric structure in ideals of compact operators. (English) Zbl 1463.46088 Vladikavkaz. Mat. Zh. 20, No. 1, 30-37 (2018). MSC: 46L52 46B04 47L20 PDF BibTeX XML Cite \textit{B. R. Aminov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 20, No. 1, 30--37 (2018; Zbl 1463.46088) Full Text: DOI MNR OpenURL
Alimov, Akrom Akbarovich; Chilin, Vladimir Ivanovich Derivations with values in an ideal \(F\)-space of measurable functions. (Derivations with values in an ideal \(F\)-spaces of measurable functions.) (Russian. English summary) Zbl 1464.46026 Vladikavkaz. Mat. Zh. 20, No. 1, 21-29 (2018). MSC: 46E30 47B47 PDF BibTeX XML Cite \textit{A. A. Alimov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 20, No. 1, 21--29 (2018; Zbl 1464.46026) Full Text: DOI MNR OpenURL
Azizov, Azizkhon Nodirkhon; Chilin, Vladimir Ivanovich Blum-Hanson ergodic theorem in a Banach lattices of sequences. (Russian. English summary) Zbl 07259901 Vladikavkaz. Mat. Zh. 19, No. 3, 3-10 (2017). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{A. N. Azizov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 19, No. 3, 3--10 (2017; Zbl 07259901) Full Text: MNR OpenURL
Chilin, V. I.; Karimov, J. A. Laterally complete \(C_\infty(Q)\)-modules. (Russian. English summary) Zbl 1448.46040 Vladikavkaz. Mat. Zh. 16, No. 2, 69-78 (2014). MSC: 46H25 16D10 PDF BibTeX XML Cite \textit{V. I. Chilin} and \textit{J. A. Karimov}, Vladikavkaz. Mat. Zh. 16, No. 2, 69--78 (2014; Zbl 1448.46040) Full Text: MNR OpenURL
Zakirov, B. S.; Chilin, V. I. Decomposable measures with values in order-complete vector lattices. (Russian) Zbl 1324.46055 Vladikavkaz. Mat. Zh. 10, No. 4, 31-38 (2008). MSC: 46G10 PDF BibTeX XML Cite \textit{B. S. Zakirov} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 10, No. 4, 31--38 (2008; Zbl 1324.46055) Full Text: MNR OpenURL
Chilin, V. I.; Ganiev, I. G.; Kudaĭbergenov, K. K. GNS-representations of \(C^\infty\)-algebras over the ring of measurable function. (Russian) Zbl 1324.46069 Vladikavkaz. Mat. Zh. 9, No. 2, 33-39 (2007). MSC: 46L08 46L05 PDF BibTeX XML Cite \textit{V. I. Chilin} et al., Vladikavkaz. Mat. Zh. 9, No. 2, 33--39 (2007; Zbl 1324.46069) Full Text: MNR OpenURL
Ganiev, I. G.; Chilin, V. I. Measurable bundles of \(C^*\)-algebras. (Russian) Zbl 1051.46053 Vladikavkaz. Mat. Zh. 5, No. 1, 35-38 (2003). Reviewer: S. A. Malyugin (Novosibirsk) MSC: 46L89 46E30 PDF BibTeX XML Cite \textit{I. G. Ganiev} and \textit{V. I. Chilin}, Vladikavkaz. Mat. Zh. 5, No. 1, 35--38 (2003; Zbl 1051.46053) Full Text: EuDML Link OpenURL